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MONTE CARLO METHOD FOR THE CALCULATION OF TRANSPORT 

PROPERTIES IN A LOW-DENSITY IONIZED GAS 

by Charles M. Goldstein 

Lewis Research Center 

SUMMARY 

An introduction to the general Monte Carlo method is presented, along with a dis- 
cussion of its scope of application to plasma physics. This is followed with a heuristic 
sketch of the method. The problem of electron flow through a perfed Lorentzian gas in 
a parallel-plane diode is then formulated. The Monte Carlo solution is discussed in de- 
tail along with the relevant computational techniques employed. 
from the theory of random variables a re  included in an appendix. ) 

The effects of mean free path on current-voltage characteristics, density distribu- 
tion, and potential distribution a re  presented for two cases - monoenergetic and thermi- 
onic emission. Results indicate that electron-neutral elastic collisions can have a sig- 
nificant effect on the current-voltage characteristics for electrode separations as small 
as one mean free path in the case of thermionic emission, and one-half mean free path 
in the case of monoenergetic emission. 

(Pertinent concepts 

I NTRO D U CT IO N 

A major difficulty in the study of low-density ionized gases is the lack of suitable 
analytical methods for determining the effects of collisions. 
defined as those situations in which a characteristic dimension is of the order of a few 
mean free paths, that is, the regime wherein neither a collisionless nor a continuium 
approximation can be expected to represent the actual situation. 
portance in low-pressure thermionic diodes, plasma sheaths (probe theory), ion engines, 
and cross-section measurements. 

Much effort has been expended to obtain solutions of the Boltzmann transport 
equation for low-density neutral gases (ref. 1). Little work has been done on the 
extension of these methods to low-density ionized gases. Recently, however, Sock01 

"Low density'' is here 

This regime is of im- 



(sef. 2) has succeeded in numerically integrating the Boltzmann transport equation for 
a particular low-density ionized gas problem. Unfortunately, the numerical integration 
is very difficult for even the simplest hard-sphere collision cross section; the feasi- 
bility of extending this method for more complex collision cross sections has not as yet 
been investigated. 

This report presents a new method for determining analytically the transport prop- 
erties in a low-density ionized gas for an arbitrary collision cross section. Results 
with this method are given for two electron transport problems. The method proposed 
is, essentially, a consistent-field Monte Carlo method. Since the Monte Carlo method 
has not been widely applied in the fields of plasma physics or ionized gases, a brief 
introduction is presented; a review of the pertinent random variable theory is given 
in appendix A. The ability to use this method effectively is strongly dependent on 
numerical procedures and "tricks of the trade. 1t A section is therefore included on 
the various computing techniques; in addition, a complete program listing plus selected 
flow charts are to  be found in appendix C. A discussion of two important computing 
programs is presented by their author, H. Renkel, in appendix B. 

The general method of calculating transport properties is applied herein to the 
problem of electron transport in a perfect Lorentzian gas with a hard-sphere collision 
cross section; in particular, the method is employed to  obtain electron flux character- 
istics in a plane-parallel diode including the effect of electron-neutral collisions. 

Langmuir (ref. 3) published the first correct solution to the effect of space charge 
and initial velocities on the potential distribution and thermionic current between 
parallel-plane electrodes for no collisions (vacuum diode). He also studied (ref. 4) 
the problem of diffusion of electrons back to the emitter for the case of a very small 
mean free path. These results a re  extended herein to  the case of electron-neutral 
collisions for which the mean free path is not necessarily small with respect to the 
interelectrode separation. 

MONTE CARLO METHOD 

General Description 

The Monte Carlo method is, in general terms, a technique for solving physical and 
mathematical problems by using random sampling. Although the term "Monte Carlo 
method" has been subjected to various interpretations, an acceptable statement of the 
method as applied herein has been given by Donsker and Kac (ref. 5): "The Monte Carlo 



approach consists in permitting a 'particle' to play a game of chance, the rules of the 
game being such that the actual deterministic and random features of the physical proc- 
ess are step by step exactly imitated by the game. By considering very large numbers 
of particles, one can answer such questions as the distribution of the particles at the end 
of a certain period of time, the number of particles to escape through a shield of a spe- 
cific thickness, etc. One important characteristic of the preceding approach is that the 
functional equation describing the diffusion process is bypassed completely, the proba- 
bility model used being derived from the process itself. " 

A short history of Monte Carlo applications is to be found.in the paper by Goertzel 
and Kalos (ref. 6). An excellent review of the basic principles is given in reference 7, 
and an extensive bibliography has recently been compiled by Kraft and Wensrich (ref. 8). 
This method has, in recent years, been employed with considerable success to a wide 
variety of problems, most notably in the area of nuclear shielding problems (viz., neu- 
tron transport). These latter problems are linear in the sense that the neutron trajec- 
tories a r e  independent of the neutron density. More recently, the method has been ex- 
tended to certain nonlinear problems in radiation transport (ref. 9). 

one-dimensional electron (ion) diodes, but these studies a r e  more often referred to as 
computer-simulated solutions, or '?computer experiments. ? '  The difference in termi- 
nology reflects the fact that these studies approximate the physical model by a finite 
number of current sheets, which are then followed deterministically through all mutual 
interactions by the computer. The Monte Carlo method, on the other hand, most fre- 
quently implies repeated, stochastically independent trials. A short history of the afore- 
mentioned computer experiments is to be found in the paper by Burger (ref. 10). 
studies do not take collisions into account, nor does it seem practical to do so because 
of the demands this type of analysis would impose on computer storage requirements. 

Itoh and Musha (ref. 11) employed a Monte Carlo calculation to determine the ion- 
ization and excitation coefficients of electrons in a uniform electric field E for given 
gas pressure P. They also computed drift velocity and mean energy for several values 
of E/P. Although the authors state that this method can be extended to strong, non- 
uniform electric fields, it cannot provide a suitable model from which diode character- 
istics could be obtained since space-charge effects, which introduce a nonlinearity, have 
not been considered. 

Just as the nonlinearity in the radiation transport problem is characterized by a 
single parameter, the temperature (ref. 9), so the nonlinearity in the charge-particle 
transport problems is characterized by the potential. Unlike the photons in the former 
problems, however, the charged particles experience a body force proportional to the 
first derivative of the potential. 

There have been some applications of the Monte Carlo methods to the investigation of 

These 
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Heur is t i c  Sketch of t h e  Method 

First the relatively simple problem of the attenuation of a molecular beam by a 
homogeneous gas shall be considered. If the actual experiment is performed for a given 
emission flux ro and the flux reaching the target (or collector) rc is measured, it is 
reasonable t o  interpret the ratio rc/r0 as the probability that a unit of emitted flux 
will reach the target. If a knowledge of the scattering probabilities of a single molecule 
passing through the same gas is assumed, it is possible on a computer to follow a cer- 
tain number No, one at a time, and tally the number Nc that reach the collector (the 
others a r e  scattered back to the emitter). Then the ratio Nc/No would be an approxi- 
mation to  the experimentally determined rc/ro. Since the experimental fluxes may be 
of the order of 10l8 particles per square centimeter per second or higher, it is not con- 
ceivable, even in this relatively simple situation, to "do the experiment" on the com- 
puter. As No becomes larger, however, the approximation Nc/No becomes better. 
Statistical analysis provides a means of estimating how good the approximation is. 

For the case of charged particles flowing through a gas, the situation is complicated 
by the nonlinearity introduced by the space charge. That is, the flow of charged par- 
ticles is not only influenced by collisions with the gas molecules, but also by the poten- 
tial field; the potential field, itself, is a function of the density of charged particles. 
This is the situation considered herein. To start, for a given collector potential v(L) 
a potential distribution ,Y<x) is assumed. An approximation to the current reaching the 
collector, Nc/No, is then obtained as in the molecular beam case. In addition, however, 
the contribution to the density, at preselected data points, of each charged particle is 
also tallied. These densities a r e  used to solve Poisson's equation for a new potential 
distribution. The process is then repeated (i. e. , iteration is performed on the potential 
distribution) until the potential distribution "converges. '( Convergence must here be 
considered only in a statistical sense; when further iterations produce only random 
fluctuations in the potential distribution, "convergence" is assumed. Random fluctua- 
tions are,  of course, to be expected, since only a small statistical sample No of the 
total flux is considered. After convergence has been achieved, succeeding iterations 
may be considered, in the parlance of statistical analysis, as independent trials; each 
resulting approximation Nc/No may be considered a sample mean (appendix A). An 
analysis of the sample means provides a way of estimating the accuracy of the result. 

FORMULATION OF ELECTRON DIODE PROBLEM 

The physical model of an infinite parallel-plate diode is depicted in figure 1. In the 
same figure the types of scattering that may occur for a monotonic potential distribution 
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ter Coll  tor are shown. In figure 2 a typical potential 
distribution is shown. When a potential 
minimum exists as indicated in this figure, 
a certain portion of thermionically emitted 
electrons will be rejected back to the 
emitter even in the absence of collisions. 
The existence of a potential minimum less 
than both emitter and collector potentials 
defines the space - c har ge - limited regime 
of diode operation. 

The perfect Lorentzian gas assump- 
tion implies an infinite mass target par- 
ticle, and hence the laboratory system be- 
comes equivalent to the center of mass Spatial coordinate, x 

Figure 1. - Diode model and types of scatter. system. Since hard-sphere collisions 
result in isotropic scattering in the center 
of mass system, the equivalence of the 
two systems in this case results in iso- 
tropic scattering in the laboratory system. 

Isotropic scattering means, by defini - 
tion, that the probability of scattering into 

Collector 
potential 
7 ( L )  

I 
I 

unit solid angle is the same for all angles. 
I The probability distribution function 

(hereafter, p. d. f . ,  see appendix A) is 
therefore the constant 1/40. Hence the 
probability of scattering into solid angle 

0 Xmin imum L 
Spatial coordinate, x 

Figure 2. - General potential distr ibution. 

dS1 is dS1/47r. In terms of the scattering angle e ,  this becomes 

Consequently, the p. d. f. of scattering into angle de is simply sin 8/2. 
The assumption of hard-sphere collisions also implies a constant mean free path A. 

Now if  that group of electrons that has just collided is considered, then the fraction of 
these electrons that will suffer collisions in distance Qc is (ref. 12, p. 102, eq. (98a)) 

where 
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I = s/L 

a! = L/h  

and s is the path length and L the electrode spacing. 

Thermionic Emission 

For this case it is assumed that electrons are emitted with a half-Maxwellian 
velocity distribution 

2 2  
f(u,V) du dV = (4/VT)Ve-(U + du dV 

where 

(4) 

The one -dimensional Poisson? s equation, in dimensionless variables, becomes 

where 

y =  - 
L 

and 
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C = 8(r/2kT)3/2m1/2eJ 0 L2 

Monoe nergetic Emission 

The analysis for monoenergetic emission directly parallels that for thermionic col- 
lision with a few minor changes. The dimensionless variables u, V, and SQ are now 
defined as 

vO 

q=- 2eV 
2 

mvO 

The constant parameter C in Poisson's equation (eq. (6)) becomes 

2 8neL Jo 
C =  

3 
mvO 

MONTE CARLO SOLUTION 

Thermionic Emission 

Initial conditions. - It must be emphasized that the test "electrons" are not chosen 
from the half-Maxwellian distribution (eq. (4)). Although test "electrons" are men- 
tioned, the statistics are obtained for units of electron flux - not units of charge. 
the initial velocities must be chosen from the distribution of flux in velocity space 

Hence, 

-(u2+V2) du dV 6 uf(u, V) du dV = 4uVe 

7 



from equation (4). Since the u and V components of velocity are independent, the 
respective marginal distributions (see ref. 13, p. 287) Fu(V) and Fv(u) can be 
obtained: 

2 2  
'(u +v d v  V 

Fu(V) = Im du I 4uVe 
0 0 

2 2  Fv(u) = lm dV /" 4uVe '(u +v ) du 
0 0 

But these marginal distributions a r e  simply the cumulative distribution functions (here- 
inafter, c. d. f .  ) for u and V, respectively. From equations (A16) and (A15), 

I 2 u = -ln(Ru) 

where Ru and + a re  random numbers between 0 and 1. Equations (14) are then used 
to determine the initial velocities of each test electron. 

Distance to collisions. - The distance to collision must be obtained at the start of 
each new electron trajectory (i. e. , on emission from emitter o r  after a collision). 

collision in a distance B 5 Qc. This, however, is just the definition of the c. d. f. F(1,) 
(see appendix A). Hence, from equation (A16) can be obtained a relation between the 

Equation (2) can also be interpreted as the probability that an electron will suffer a 

random numbers Rp and the distribution of path length to collision: 

- CYQ, 
R g = l - e  

where 

= -(:) ln(RB) 

Scattering angle. - If a collision takes place, then the scattering angle 8 must be 

8 



determined. 
(compare eq. (A3) in appendix A): 

From the p. d.f. (eq. (l)), the c.d.f. F(B) can immediately be obtained 

(17) 1 - COS e F(0) = 
2 

But in this case the c.d.f. can take on the values -1 5 F(0) 5 1 (forward and backward 
scattering). Hence, in order to  choose randomly from this range (see eq. (A16)), let 

cos 8 = 1 - 2Re (18) 

2 
where once again 0 5 Re 5 1. 
sin e = 1 - cos e) is of interest in the actual computations. 

(see appendix B where yi corresponds to the arguments xa). 
k 

Equation (18) is the final result since only cos 0 (and 

Charge density. - The data points yi a r e  selected by the curve-fitting subroutine 
The contribution of the 

2 2 

th  test electron (unit of flux) of velocity to the charge density at each yi is 

where 

I n  

yo is the position of the last "event'' (collision or emission), and uo is the initial 
velocity immediately after the last event (i. e . ,  at the beginning of a new trajectory). 

The tallied density at a data point yi for a total of No histories is then 

where the sum over k may be greater than, equal to, or less than No because of col- 
lisions and turning points in the potential field. 

emitted current density Jo for each iteration is computed from the relation 
Current to collector. - The ratio of current density to  the collector J to  the _ ~ _ _ _  

9 



J -Nc  - - -  
Jo No 

where Nc is the number of test electrons reaching the collector. 

Monoenergetic Emission 

. 

emission with two exceptions. 
velocities the initial conditions are, for every electron, u = 1 and V = 0, and second, 
the density for No histories becomes (cf. eq. (14)) 

The solution for monoenergetic emission is exactly the same as for thermionic 
First, instead of choosing from an initial distribution of 

COMPUTATIONAL METHODS 

The original program was based on the assumption that Monte Carlo computations 
would be limited to only a few collisions because of the requirement of reasonable com- 
putor execution times. Hence, this program was optimized for L/X < 1. The results 
proved this assumption overly pessimistic, but the program was not revised for the 
present report. 

Evaluation of Potential and Potential Minimum 

After a curve f i t  of the density is obtained (subroutine CHEBY, appendix B), the 
density distribution is given by a power series in y: 

n(y) = a, + aly + a2y2 + . . . + any n 

k 
= ajyj 

j=O 

where k is the degree of the fit. 
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The potential is obtained by substituting equation (24) in Poisson's equation (eq. (6)) 
and integrating n(y) term by term: 

But s ince 

equation (25) can be written 

k+2 

j= 1 

k+ 2 > 
j=2 J 

After the a. have been determined (subroutine CHEBY), the c a r e  computed in sub- 
routine COEF( 2). 

Originally, equation (26) was employed (with k usually equal to 10) each time (p(y) 

was evaluated, but this proved too time consuming. For this reason it was decided to 
tabulate cp(y) at the beginning of each iteration and use the tabulated values whenever 
possible. The interelectrode space was subdivided into 1024 regions, and the 1025 V a l -  

ues of cp(y) were tabulated in subroutine MINPHI. At the same time, cp was tested at 
each evaluation for the minimum value. Hence, the location of the potential minimum 
was ascertained within *1/2048 of the interelectrode separation. In addition, cp was 
tabulated at data points yi where the density was to be tallied. The results of tabu- 
lating the potential was an eight-fold (and greater) decrease of execution time. 

J j 
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Choosing f rom the  D is t r ibu t ion  e-' dx 

It is pointed out in appendix A that choosing random values x k  from the distribu- 
tion whose p. d. f. is e-x dx is equivalent to choosing random numbers Rk from the 
uniform distribution (eq. (A?')) and using equation (A15): 

2 In the present problem, it is possible to identify the random variables u2 and V 
with X, and 1, with (1/cr)X (eqs. (14) and (16), respectively). The random num- 
bers Rk a r e  obtained from a pseudo-random-number generator of the congruence- 
method type (ref. 5). This random generator is part  of the computor library here at 
Lewis Research Center. 

Although the desired random variable can be obtained directly from equation (28), 
it was decided to tabulate the xk instead. A table (1025 entries) was constructed of 
Xk (subroutine CUMVEL) at the beginning of the program. 
times as fast as employing equation (28) each time. 

The table look-up is five 

Location of Coll ision 

If a distance to collision lC is given, the location of the collision yc is obtained 
by solving 

Two methods were used to minimize the number of t imes the integrand, and specifically 
~ ( y ) ,  need be evaluated. First, Simpson's rule was used in a search routine to allow 
the use of the tabulated values of q(y) (see Evaluation of Potential and Potential Mini- 
mum section, p. lo),  and then the step size (in the use of SimpsonPs rule) was made to 

2 2  depend on the ratio V /u . 
The procedure employed for obtaining a reasonable step size can be best explained 

by an example. Assume that yc falls between any two points yo and yf. For a 
straightforward application of Simpson's rule, three values are needed of the integrand 
in equation (29) at three equidistant values of y: yl, y2, yg. Initially y1 = y 
q(y) has already been tabulated at 1025 values of y given by 

The 0' 
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m - 
ym-1024 

Consequently, yo and yf will always 

m = 0, 1, 2. . . 1024 (30) 

be selected equal to tabulated values of ym- and 
. Hence, the first estimate of step size A in units of m is given by U 

ymf 

where [ ] refers to the integral value. A second estimate of step size (obtained as a 
result of trial and er ror  computations) is given by 

4-M A' = 2 

where 

Then, the step size is taken as the minimum of the two estimates. 

four steps), then A is set equal to 
If the value of A from equation (31) is zero (i. e. , distance to collision is less than 

If this should be zero, then the collision location yc is arbitrarily set equal to y "f' 

CONVERGENCE AND STANDARD DEVIATION 

It was observed, during tests of the program, that convergence (in the statistical 
sense, p. 4) was obtained in the first few iterations. Since the succeeding iterations a r e  
treated as independent trials, the problem ar ises  in a production run of just how to 
decide when convergence occurs. This was done in the following manner. 

Each case (given anode potential) was run for a given number of iterations, for 
example, 15. At the end of each iteration the sample means n(yi) and J/Jo (see 
eqs. (21) to (23)) were stored. Each of these stored values is analogous to an experi- 

13 
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TABLE I. - EFFECT O F  VARIOUS PARAMETERS ON STANDARD DEVIATION AND EXECUTION TIME 

Iten 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Type of 
emission 

Mono- 
ener - 
getic 

1 
Thermi- 

onic 

I 

Electrod( 
spacing 
to mean 
free path 

ratio, 
L/h 

.5 
1.0 
5.0 
5.0 
.1 
.1 

0.75 
2.0 
2.0 
4.0 
4.0 
4.0 
12.0 
32.0 
10.2 
10.2 

Dimension- 
less collec- 

tor potential, 

~ 

~ 

Current 
density 
ratio, 
J/ J~ 

0.961 
.972 
.971 
.986 
.918 
.839 
.358 
.672 
.942 
.942 

Standard 
deviation, 

UJ 

0.001 
.0012 
.0019 
.0005 
.0015 
.0015 
.009 
.003 
.0016 
.0008 

mental data point. Carrying the analogy further, a 

Samplc 
size 

5 000 
5 000 
2 000 
10 000 
2 000 
1 000 
1000 
1000 
1000 
10 000 

the el 

Number oi 
iterations 

10 
10 
5 
10 
10 
10 
15 
18 
10 
10 

~ 

CollisionE 
(for one 

iteration) 

483 
503 
213 

1079 
1257 
1483 
8 475 
16 367 

147 
1198 

Execution 
time, 
min 

2.42 
2.46 
.51 
5.28 
2.48 
2.09 
17. 7 
37.65 
1.49 
14.18 

. of 15 runs (iteraLms) there 
were sets of 15 data points for each of the sample means. If this were an experiment, 
it would be expected that each set of 15 data points would have a certain amount of 
'*scatter** due to random error.  In the present situation, however, the iterations before 
convergence will produce data points with a nonrandom error.  The problem then be- 
comes one of simply eliminating the iterations that introduce a nonrandom error.  This 
was accomplished by obtaining the sample mean and standard deviation (see appendix A) 
of each set of 15 data points. Then from each set only those points were retained that 
were within three standard deviations of the sample mean. The final values of sample 
means and standard deviation (given in table I) were obtained from the remaining data 
points. In all cases, the number of iterations treated as independent trials was of the 
order of ten. 

RESULTS 

Thermionic Emission 

The effect of mean free path on the current-voltage characteristic is shown in fig- 
ure 3. The solid line, L/X = 0, represents the collisionless solution of Langmuir 
(ref. 3). The Monte Carlo calculations indicated along this curve were undertaken as a 
check on the computer program. These particular results were obtained with 5000 his- 
tories per iteration and ten iterations. The execution time for each point on the curve 
varied between 2.5 and 4.0 minutes. 

14 
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Figure 3. - Effect of mean free path on  current-voltage characterist ics for thermionic  emission. Dimensionless 
constant C = 50. 

The two solid data points on the curves for L/A = 1 and 5 represent the conditions 
where the slope of the potential is zero at the emitter. The 0 ' s  on the curve L/A = 1 
indicate the results of an independent solution of Boltzmann's transport equation for this 
problem (ref. 2). 

cision in the curve-fitting routine program (appendix B) used to f i t  the density distribu- 
tion. A more flexible routine is being developed. 

The effect of potential on the electron density distribution is shown in figure 4. 
From the emitter out to about one mean free path, the density of the higher energy elec- 
trons is less  than that of the lower energy electrons as would be expected under condi- 
tions of no collisions. The actual decrease in the magnitude of the density at the emitter 
surface, however, indicates that in the higher potential case more of the backscattered 
electrons are being turned about by the potential field before reaching the emitter. This 
can be best understood by considering the effect of an accelerating potential field on the 
cone of capture at the emitter for backward scattering (see fig. 5). This cone of capture 
may be defined by a polar angle e* It will suffice to consider a first collision whereby 
the electron has initial energy of uo + Vo and the collision occurs at xc. The magni- 
tude of the x-component of velocity after scatter becomes 

The curve for L/A = 5 was not extended to lower q(1) because of a loss in pre- 

i 2  

u 2 = [uo 2 2  + vo + cp(xc)] cos 2 e 

15 
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Figure 4. - Effect of anode potential on  electron density d is t r ibut ion for t he rm-  
Ionic emission. Dimensionless constant C = So; electrode spacing to mean 
free path ra t io  L h  = 5. 

If the electron is to reach the emitter against the monotonic potential field q(x) L 0, 
then u2 must satisfy the condition 

When equation (33) is substituted into equation (32), 9 * is defined by 

2 dx,) 
cos e* = 

Emitter Collector 

Figure 5. - Cone of capture at emitter. 

16 

or 

2 1 
COS e* = 

u 2 2  +vo 
0 1 +  

(34) 

Equation (34) shows that an increase in poten- 
tial q(xc) increases cos 8* and reduces 8*. 2 
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Figure 6. - Effect of mean free path on electron density distr ibut ion for thermion ic  emission. Dimensionless con- 

I 
0 

Dimensionless spatial coordinate, y 

constant C = 50; dimensionless collector potential p(l) = 32. 

higher the potential field, the smaller is the cone of capture at the emitter. 
This same phenomenon accounts for the crossover in the curves of figure 4 away 

from the emitter. Since fewer of the backscattered electrons in the higher electric field 
case reach the emitter, this implies that more are turned about by the field. The pres- 
ence of turning points in the electron trajectories affects the charge density in two ways. 
Since the u-component of velocity is zero at a turning point, the contribution to the 
charge density there is exceptionally high; in addition, the path length of an electron in 
the neighborhood of a turning point is much greater than the distance traveled normal to 
an electrode surface, these electrons suffer more collisions, and, hence, contribute 
more strongly to the charge density. This latter point is vividly illustrated by compar- 
ing the typical number of collisions per iteration for the two cases of figure 4 (items 7 
and 8, table I, p. 14). In the low potential case (~(1) = 12) over 8000 collisions were 
observed in one iteration, while for the high potential case (cp(1) = 32) over 16 000 col- 
lisions were observed. The increase in number of collisions accounts for the crossover 
in the two curves of figure 4 and the higher density for y > 0.2 in the case cp( 1) = 32. 

The effect of mean free path on the density and potential distributions for constant 
collector potential are shown in figures 6 and 7, respectively. As expected, the effect 
of collisions is to increase the charge density and, therefore, decrease the potential in 
the interelectrode space. 

17 
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Figure 7. - Effect of mean free path on  potential d is t r ibu-  
t ion  for thermionic  emission. Dimensionless constant 
c = 50. 

1.000 r 

Monoenergetic Emission 

The corresponding diode characteristics 
for monoenergetic emission are shown in fig- 
ures 8 to 11. The author has, at present, no 
hypothesis regarding the inflections observed 
in the current-voltage characteristics (fig. 8) 
for L/X = 0.5 and 1.0. The points calculated 
are reproducible, and each point, as plotted, 
spans at least plus or  minus two standard 
deviations about the mean J/Jo. The solid 
lines represent independent solutions of the 
Boltzmann equation for this problem in the 
limit of one collision (ref. 14). 

energetic emission characteristics is the 
buildup of charge density in the interelectrode 
region as the potential is decreased (fig. 9). 
This increase in charge density is consider- 
ably enhanced by the appearance of a potential 
minimum (upper curve in fig. 9). The poten- 
tial minimum causes more turning points to 
occur in the trajectories of the scattered 

Another noteworthy feature of the mono- 
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Figure 8. - Effect of mean free path on  current-voltage characterist ics for monoenergetic 
emission. Dimensionless constant C = 10. 
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Figure 10. - Effect of mean free path on  electron density d is t r ibut ion for electron 
beam. Dimensionless constant C = 101 fi; dimensionless collector potential 
cp(1) = 4. 
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4- electrons. Since the u-component of velocity 
becomes zero at a turning point, the contribu- 
tion to the charge density of electrons under- 
going reflections in the potential field is ex- 
ceptionally high. 

- x - 
9- 3-  
r 0 .- 

n 
m 
I c W 

- .- 
DISCUSSION OF RESULTS c 

The agreement of the solution obtained by 
the method proposed in this report and the in- 
dependent results of Sockol (ref. 2 and fig. 3, 

fig. 8) is very gratifying indeed. Most en- 
couraging, with regard to the extension of this 

presented in table I (p. 14). These statistics 
show that the execution times needed to obtain reasonable standard deviations oJ need 
not be excessive. In turn, they illustrate the effect of the consistent-field constraint 
(Poisson's equation) on the number of histories needed for good statistics (tens and hun- 
dreds of thousands of histories are generally required in other problems where this con- 
straint is absent). It must be emphasized that the execution times illustrated in table I 
a r e  not the minimum attainable, since no attempt has yet been made to incorporate any 
of the variance-reducing techniques discussed in the literature (ref. 15). 

The execution times in the problems treated herein could most directly be de- 
creased by a more extensive use of tabulated values (eliminating the Gaussian quadra- 
tures - hence, obviating completely the need to evaluate q(y) during an iteration) and 
by optimizing the number of tabulations needed (one may not need 1025 tabular values). 
In addition, for larger values of L/h, it would be more appropriate to step along each 
trajectory from the emitter instead of first ascertaining if a collision has occurred in 
the interelectrode space as is done in the present case. 

.- 
n 

-1 I I I I p. 15) and Goldstein and Goldstein (ref. 14 and 
0 . 2  . 4  .6 .8 

Figure 11. - Effect of mean free path on  potential d istr ibu- 

Dimensionless spatial coordinate, y 

ion for monoenergetic emission. Dimensionless constant method to other problems, a r e  the statistics c = IO/fi. 

CONCLUDING REMARKS 

A general method for the calculation of transport properties in a low-density ionized 
gas has been presented. This method has been applied to two cases of electron trans- 
port in a perfect Lorentzian gas. Excellent agreement has been demonstrated by two 
other independent investigations. 

Although the particular applications of the method presented herein employ a hard- 
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sphere collision model, the great advantage in the Monte Carlo method lies in its in- 
herent ability to provide similar solutions for any given collision model, theoretical o r  
experimental. This includes inelastic, charge exchange, and ionizing collisions. This 
method is limited, however, to those cases where avalanche ionization does not occur; 
even in this latter case, however, the Monte Carlo method should be capable of provid- 
ing the source intensities for the collision term in the Boltzmann equation for arbitrary 
cross sections, and, therefore, allow a numerical solution of the same. 

This method should also be of value in the solution of plasma sheath problems, 
which are,  in reality, just generalizations of the diode problem with different boundary 
conditions at the emitter and/or collector. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, May 14, 1965. 

. I  
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APPENDIX A 

RANDOM VARIABLES 

In this section there is interest only in continuous probabilities for which there 
exists a continuous function f(x) , called the probability distribution function (hereinafter 
p. d. f . ) ,  such that 

P[a 5 X 5 b] = /,* f(x)dx 

where 

f(x) I O  - - < x < *  

To speak of a "random variable" X (instead of x) is really to  define a mathe- 
matical point of view. 
value of X but instead is only interested in inquiring about the probability of finding X 
in a certain region (of x-space). 

For example, the case is considered where the probability density function is the 
nondimensionalized Maxwellian distribution of the x-component of flux (eq. (11) inte- 
grated over V): 

This unambiguous point of view maintains no interest in the exact 

2 
f(u)du = 2 ~ e - ~  du U I O  

= o  u < o  

In the present analysis, the concern is not for a knowledge of a particular value of u, 
but rather to determine just what the probability is that a random variable U lies in the 
range u, u + Au. 

In the study of a random variable X the function Fx(x) is of great importance: 

X 
Fx(x) = P[X 5 x] E f(x')dx' 

-00 
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This Fx(x), or  simply qx) ,  is called the cumulative distribution function (hereinafter 
c. d. f. ) of the random variable X. This function shall be used subsequently. 

A concept basic to the discussion of random variables is the expectation value E[ ] 
of a function of a random variable g(X): 

E[g(X)] = J+m g(x)f(x)dx 
-m 

In particular, the expectation of a random variable itself 

E[X] = j+m xf(x)dx 
-m 

is the familiar mean or  average value of X, -a < X < 00. Of interest in the text is the 
expectation of the function 1/U of the random variable U distributed as f(u) (eq. (A2)). 

E [+] = f m  A 2 ~ e - ~  2 du 

U 

“ 0 2  
= 2 l  e-u du 

hence, 

E[+] = fi 

‘ 7 ,  -- 

Choosing from a Distribution 

It is first necessary to define what is meant by choosing a sequence of random num- 
bers x k  from a distribution f(x) (or equivalently, choosing x k  distributed as f(x)). 
It is assumed, for the sake of illustration, that the p. d. f. f(x) is nonzero only in the 
interval 0 I x 5 1. This interval is then subdivided into 10 equal subintervals. Then, 
if the sequence of N random numbers x k  is distributed as f(x), a plot of Ni/N 

th  against the midpoint of the ith interval (where Ni is the number of Xk’s in the i 
interval) should approximate f(x). Of course, the larger the number N, and/or the 
smaller the subdivision used, the better will  be the approximation. 
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How is a sequence of random numbers, say uk distributed as f(u) (eq. (A2)), 
chosen on a digital computer? In practice, this sequence is not obtained; instead, a 
sequence of random (pseudo-random) numbers Rk is obtained, distributed as the uni- 
form distribution 

O i r c r l  

r > l  

P(r) = 0 

= 1  

= o  

Hence the immediate problem then becomes, given a sequence of random numbers Rk 
distributed as p(r) (eq. (A7)), how to obtain, even indirectly, a sequence of random 
numbers u k  distributed as f(u) (eq. (A2)). 

function 
Consider two random variables X and Y related by the monotonic increasing 

where X has a known p. d. f. f(x). Then if x and y are corresponding values related 
by equation (A8), 

P[Y < y] = P[X < x] 

and 

X 
P[X < x] = Fx(x) = f(xT)dxl 

-03 

or  

f y  g(y')dy' = /" f(xT)dxT 

The inverse problem can now be considered. If g(y) and f(x) are  given, the func- 
tional relationship between y and x (eq. (A8)), such that equation (A9) is still valid, 
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must be determined. This relation can be easily obtained providing both integrals of 
equation (All)  can be solved in closed form. 
and f(u) (eq. (A2)) are employed, 

For example, if the p. d. f. ' s  p(r) (eq. (A7)) 

lR p(r)dr = 4' f(u)du 

LR 1 d r  = iU 2 ~ e - ~  du 
2 

2 
R = -e-' + 1 

or 

2 U = -ln(l - R) 

but since R is a random number between 0 and 1, 1 - R is also a random number 
between 0 and 1; hence, 

(A151 2 U = -In R 

is the required functional relationship between U and R. Therefore, only a sequence 
of random numbers Rk from the uniform distribution p(r) (eq. (A7)) need be obtained, 
and then equation (A159 can be used to obtain a sequence of random numbers u k  dis- 
tributed as f(u) (eq. (A2)). 

Generalizing the previous procedure to obtain a sequence of random numbers x k  
distributed as f(x), and given a sequence of random numbers Rk from the uniform dis- 
tribution (eq. (A7)), it is only necessary to solve the equation 

where F(x) is the c.d.f. (eq. (A3)) of X. 

closed form as in the preceding example. There do exist techniques for choosing from 
distributions in this case (e. g., the rejection method, ref. 14), but they need not be dis- 
cussed here. 

Another important aspect of random sampling from a given distribution is the result 
of summing the random numbers, o r  a function of the random numbers, obtained. For 

This method becomes unwieldy, however, whenever F(x) cannot be expressed in 
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instance, if a sequence of random numbers x k  is chosen and distributed as f(x), there 
is obtained upon summing 

This is readily extended to 

For a particular case of interest in the text 

N 
l i m - c , = E [ $ A = ~  1 1 

N-mN k=l k 

from equation (A6), where U is distributed as f(u) (eq. (A2)). A sample mean is de- 
fined as 

for finite N. 

Standard Deviation 

If the random variable X is distributed as f(x) and g(x) is an integrable function 
of x, then 

J- 00 
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and the standard deviation of g(x) is defined as 

G2 = E [(g - E[g])2] = rm (g(x) - E[~]}~f(x)dx = E[g2] - 
g -ca 

It is noted that this definition of G 
be shown that an unbiased estimate of G 
cise 4.6) from a random sequence {g(xk)} by the formula 

is based on a knowledge of the p. d. f. of X. It can 
g 

can be obtained (ref. 10, p. 370, exer- 
g 

Equation (A22) represents the computation performed in the text to obtain uJ (see 
table I, p. 14). 

Central L imit  Theorem 

This theorem (ref. 4, p. 362) is central to all Monte Carlo problems. It is based 
on the fact that regardless of the distribution of X, the sample means g (eq. (A20)) are 
distributed approximately as a normal distribution. 

The central limit theorem can then be stated as 

For QL = -1  and P = 1, this theorem shows that the probability of the sample mean 
lying within fa /fi of the true value is approximately 0.95. 

g 
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APPENDIX B 

COMPUTER PROGRAMS 

by Harold E. Renkel 

Curve Fitting Program 

Subroutine CHEBY listing is a program for determining a finite approximation 
fN(x) in the least squares sense to data y, obtained at the arguments x, where 

k=O 

In the present problem the advantage is being able to choose the arguments before taking 
the data. This permits the application of Chebyshev polynomials as described by 
Lanczos (ref. 16). This method is both very powerful and very efficient. The coef- 
ficients ak in equation (Bl) are obtained without the need of inverting a matrix as is 
usual in the ordinary method of least squares curve fitting. 

The arguments x, a r e  found from 

x, = [cos e, + 11 
2 

where 

e, = ~ T / N  

Then an expansion for fN(x) in terms of the shifted Chebyshev polynomial (ref. 16) 
Tk(X) is obtained: 

The coefficients % are obtained from 
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where 

035) 

and ya are the data obtained at xa!. 

with integral coefficients: 
Each Chebyshev polynomial, however, can be expressed as a power series in x 

where the C can be obtained from the following recursion relations: 
kj 

J T1(X) = -1 + 2~ 

Substituting equation (B6) into equation (B3) yields the coefficients ak (eq. (Bl)): 

N 

k + bjCjk 
1 ak = - boCo 
2 

j= 1 

In addition, subroutine CHEBY makes use of the symmetry of the trigonometric func- 
tions (eq. (B5)) as discussed in reference 17 to reduce the number of multiplications 
needed. 

Gaussian Quadrature 

The use of Monte Carlo techniques and variables based on random numbers for 

29 



numerically solving problems often demands that a large sampling of data be analyzed to 
obtain the necessary accuracy of the solution. Such large samplings may require many 
minutes and even hours of computing time if time saving methods are not employed. 
Subroutine QUAD is a Fortran IV program that numerically integrates a function f(x) 
over the range xi to  xo. It is based on the method of Gaussian quadrature (ref. 18) 
which states that 

n 

j = l  

f(x)dx = H.f(a.) + En 
J J  

xi 

where the H.'s are a sequence of weight coefficients and the a.'s a r e  the associated 
abscissas that have been determined as the roots of certain orthogonal polynomials. The 
well-known e r ro r  te rm En based on the anth derivative of f(x) is not considered to 
be of such magnitude as to affect present calculations and therefore has been omitted 
from subroutine QUAD. In comparison to other more popular methods of numerical 
integration such as the trapezoidal formula and Simpson's rule, which require that the 
integrand be evaluated at many points over the range of integration [xi,xo], Gaussian 
quadrature will produce the same accuracy with comparatively fewer evaluations of the 
integrand, which results in a considerable savings of computing time especially if the 
integrand f(x) contains trigonometric functions, logarithms, or square roots. 

The subroutine in present form includes the weight coefficients and abscissas for 
n = 3 through 16. To apply subroutine QUAD, the function f(x) to be integrated, the 
upper and lower limits of the integral 5 and xo, and n the number of points of evalu- 
ation must all be specified. The program converts the abscissas from the range [-1,1] 
to the range [xi,xo] by the algorithm 

J J 

evaluates the integrand f(x) and x., and calculates the sum of the products 5f(aj). 
The final sum is then multiplied by the correction factor 3 (xo - xi) to compensate for 
the change in the range of the variable of integration. 

note any discontinuities in the range of integration [xi,xo]. If any should exist, then it 
becomes necessary to divide the region of integration into smaller intervals, choosing 
the new limits of integration so that comparatively small regions are established in the 
neighborhood of the discontinuity. This causes the integrand to be evaluated more often 

J 1 

When analyzing a function to be integrated by this method one must be careful to 
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in the neighborhood and results in a more accurate solution. 
interval [xi, xo J is the usual sum of the integrals of each of the subdivisions. 

The total integral for the 
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APPENDIX C 

FLOW CHARTS AND PROGRAM LISTINGS 

The symbols used in the flow charts (figs. 12 to 16) are as follows: 
DELX 
EN 
FPATH 
IC 
IFF 
IMIN 
IO 
ITP 
KI 
N 
PHIMIN 
S 
TPHIX(1) 
USQ 
U S W  

VSQ 
xc 
XMIN 
xo 
XTP 

size of subdivisions 
number of subdivisions 
distance to  collision 
location number corresponding to XC 
location number of bound to region containing XC 
location number corresponding to XMIN 
location number corresponding to XO 
location number corresponding to XTP 
number of iterations 
number of histories per iteration 
magnitude of potential minimum 
path length along trajectory from XO to XTP or  XC 
tabulated values of q(y )  

2 
U 

V2 
location of collision 
location of potential minimum 
location of scatter 
location of turning point 
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1 I 
- Monte Carlo - In it ial ize 

program calculation 
Computation Print/  Plot density 

punch and potential 
values results distribution 

- of mean 

I I I 

I 
I 
I 

I Call COEF(3) 1 Call PLOT 

1 Call DISCRM, DlSCRZ 

I 
I I Call ITER I I 
I - 
I Call SAND, CHEBY(1), COEW), CUMVEL 

I 
I 
I 
I 

I 

Call MINPHI, RAND, FSCAT, BSCAT, STOSS, CHEBY(2I. COEF(2) 
1 

Y J 

!Call XITP, QUAD, XIC, TALLY1, TALLY2 

[ Call COEF(1) 

Figure 12. - System and MAIN program flow chart. 
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t 
Find location and 
magnitude of po- 
tent ia l  m i n i m u m  

Choose from r a n -  
I dom distr ibut ion 

_I of ini t ia l  velocities I and mea; free path1 

Col l is ion or pas- 
sage to electrode - 
whichever comes 
f i rs t  

Io 

Locate and ta l l y  
to next event 

j Cal l  BSCAT 

to density .. 

mpute 
i t te r ing  

parameters 
K I  Iter $ ‘+I CHEBYW ; Call STOSS 

Compute new 

distr ibut ion 
t o  MAIN potential 
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Call COEFB) 

Figure 13. - Subrout ine ITER flow chart .  
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2% F = FPATH 
I(1) = I O  
A = VSQI(USQ0 +TPHIX(IO)) 
DSX(1) = SQRT(1 + A)  

I 
I 

J 

DO J = 2 , 3  

A = VSQ/{USQO +TPHIXD(J) l j  
DSX(J) = SQRT(1 + A) 4’ 

I(2) = I(1) + M  
DSX(2) = SQRT(1 + A )  
E M =  M 
H = EM*DELX*. 5 
SS = H*(DSX(l) + DSX(2)) 
Y = F - S S  

40 
I 

6 
I C  = I (2)  0 

XC = D E W  
FLOAT(1C - 1) 

Figure 15. - Subrout ine X I C  flow char t .  
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I1 = EN*XO + 1.5 
I2 - IMlN 

23 Return 

Figure 16. - Subroutine XITP flow chart. 

A listing of the FORTRAN IV programs used to calculate the transport properties 
in a low ionized gas follows. 
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S I B F T C  M A I N  DEBUG,;OECK 

C 
C 
C 
C 
C 
C 
C 

C 
C 

C 
C 

C 
C 

COMMONIB ITERINO, K I 
CQMMON/BSTOSS/WSQrVSQ~COSN,ALPHA 
C O M M O N / B P H I / N P H I ~ A P H I ( Z O I r N D P H I ( 2 0 ~ ~ N D E N  
COMMON/BMAIN/ C O N S T , V O L T ( 2 0 ) r C U R R N T ( Z O )  
C O M M O N / B M I N / X M P N ~ P H I M I N ~ I M I N ~ T P H I D O r T P H I X ~ l O Z 6 ~ ~ A ~ 8 ~ C ~ D E L X ~  
C O M M O N / B C H E B / N l ~ X ~ 2 1 ~ r Y o r C O E F S ( 2 l ~ ~ C O E F S ~ 2 l ~ ~ E R R O R  
COMMON/ B C H E B Z / N 2  
C O M M O N / B V E L / V E C ( 1 0 2 4 J  
D I M E N S l O N  D A T E I 2 )  
COMMON K N T R r N ( 2 0 )  

NO * NUMMER O F  T R I A L S  PER I T E R A T I O N  
N 1  = NUMMER OF P O I N T S  #HERE D E N S I T Y  IS SAMPLED 

ALPHA = R A T I O  OF MFP TO ELECTRODE S P A C I N G  
CONST = CONSTANT PRECEEOING D E N S I T Y  IN P O I S S O N S  E Q U A T I O N  

K I  = NUMMER OF I T E R A T I O N S  

EN 

READ I N  I N I T I A L  DATA 
R E A D ( 5 r l I  N O S N L I N ~ ~ K I ~ A L P H A , C O N S T  

1 F O R M A T ( 4 1 5 r 2 E 1 0 . 0 )  
C A L L  COEF( 1 1  
R E A 0 / 5 , 4 1  DATE 

4 F O R M A T ( 2 A 6 1  

I N I T I A L I L E  PROGRAM 
C A L L  SAND(RO1 
C A L L  CHEMY ( 1) 
C A L L  C O E F ( 2 )  
DEBUG ( C O E F S L I L r I = 1 , 1 1 )  
DEBUG4 A P H I l  I J r i = 1  1 3 1  
C A L L  CUMVEL 

COMPUTE COLLECTOR VOLTAGE AND CURRENT FOR EACH VALUE OF A P H I ( 2 )  

2 FORMAT(ZE5 .1J  
3 C A L L  T I M E l I T l )  

COMPUTE MEANS AND P R I N T  I PUNCH OUT RESULTS 

5 R E A O L S r 2 )  V O L T 8 2 0 ) r A L P H A  

W R I T E ( 6 r l O O )  V Q L T l 2 0 1 , C O N S T ~ A L P H A ~ N O ~ K I ~ N l ~ N Z  
LOO F O R M A T ( l H 1 ,  3 9 H  ANODE P O T E N T I A L  I S  r F 6 . 2 /  

1 1 x t  39HCONSTANT I N  POISSONS E P U A T I O N r  C = r F 6 . 2 /  
1 l X ~ 3 9 H O I M E N S I Q N L E S . 5  MEAN FREE P A T H  A L P H A = r l P E l O . l /  
1 1 X I  3 9 H T R I A L S  PER I T E R A T I O N ,  NO =.I5 / 
1 lX ,39HNUMBER OF I T E R A T I O N S  K I  = *  I 2  / 
1 1 x t  39HNUMBERS OF SAMPLE P O I N T S ,  N 1  =*I2 / 
1 1x9  39HNO. OF TERMS I N  D E N S I T Y  F I T  N 2  = , I 2  ) 

C A L L  I T E R  
C A L L  DISCRM 
C A L L  OISCR2(CURRNT,CM,CSTD)  
C A L L  C H E B Y l 2 1  
C A L L  COEF(2) 
C A L L  C O E F ( 3 1  
C A L L  T I M E l l  T 2 1  
T I n € = (  T 2 - T l  I l 3 6 0 0 .  
WR I T € (  61203) KNTR 

2 0 3  F O R M A T ( l H O r 2 8 H T O T A L  NUMBER OF C O L L I S I O N S  = r I 5 /  
11H0 ,36HNUMBER OF E N T R I E S  AT EACH DATA P O I N T  1 

W R I T E ( 6 r 2 0 4 )  ( N ( I ) , I + l r N l 1  

W R I T E l 6 r 2 0 0 1  VOLT(20JrAPHI(2)~CMrCSTD~XMIN~PHIMIN~TIME 
2 0 4  F D R M A T l l H  t l l I l O )  

200 F O R M A T l l H 0 ~ 1 7 H A N O D E  P O T E N T I A L  = r F 1 5 . 6 r b X , 2 8 H P O T E N T I A L  SLOPE AT EM1 
LTTER = i F l O . 4 I l H  r l 5 H A N O O E  CURRENT = , F 1 5 . 6 r 6 X r 9 H S T D . D E V . =  ,F15.6/  
I l H O i 6 H X M I N  = r F 1 5 . 6 r 6 X , B H P H I M I N  = r F 1 5 . 6 / 1 H O r 6 H T I M E  =,F6.3, 
18H MINUTES 1 

E L M F P = l . / A L P H A  
W R I T E 4 6 . 2 0 2 1  D A T E I C O N S T ~ E L M F P ~ V O L T ( ~ O ) , C M ~ C S T O  

2 0 2  FORMAT( LHS,2A6rF7 .O,F6 .2 rF9 .3 ,  F 9 . 4 r F 1 0 . 5 r  F6.2, 
C 
C PLOT D E N S I T Y  AND P O T E N T I A L  D I S T R I B U T I O N  

C A L L  PLOT 
GO TO 5 
STOP 
END 

A P H I  
7r 14 

1 0 0 0 3 1  
1 00040 
1 0 0 0 5 0  
1 00060 
1 0 0 0 7 0  
1 0 7 5  
1 00080 
1 00081 
1 0 0 0 8 5  
1 0 9 5  

1 110 
1 1 1 5  
1 116 
1 117 
1 118 
1 119 
1 120 
1 0130 
1 140 
1 150 
1 1 5 1  
1 1 5 2  
1 1 5 5  
1 160 
1 170 
1 180 
1 190 
1 00192 
1 00192 
1 00194 
1 2 0 5  
1 210 
1 220 
1 2 3 0  
1 2 3 3  
1 234 
1 2 3 5  
1 2 3 6  
1 2 3 7  
1 2 3 8  
1 0 0 2 3 9  
1 2 4 0  
1 0 0 2 4 3  
1 244 
1 2 4 5  
1 2 5 0  
1 2 7 0  
1 0 0 2 9 0  
1 2 9 2  
1 2 9 3  
1 2 9 5  
1 2 9 6  
1 0 0 2 9 7  
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

2 9 8  
299 
300 
3 0 1  
3 0 2  
303 
3 0 4  
3 0 5  
306 
307 
3 0 8  
309 
310 
340 
3 5 0  
360 
3 70 
380 
390 

38 



S I B F T C  I T E R  OEBUGrOECK 
SUBROUTINE ITER 

c c 
C MONTE CARLO C A L C U L A T I O N  OF D E N S I T Y  A N 0  I T E R A T I O N  ON P O T E N T I A L  - 
C O I S T R  I E U F  I O N  
C 

CDMMON/BMAIN/ C O N S T t H O L T ( 2 0 ) r C U R R N T ( 2 0 ~  
COMMON/B I TER/NO K I 
C O M M O N / 8 N X F / X O ~ X F , X C I X T P , F P A T H I S 1 N O U A O  ,K,II 
COMMDN/8PHI/NPHI~APHI(2O~sNOPHIsAOPHI~2O~~NOOPHI 
C O M M O N / 8 C H E 8 / N ~ ~ X ( 2 l ) ~ Y ~ 2 l ) , C O E F S ~ 2 l ~ ~ E R R O R  
C O M M O N / 8 M I N / X M l N ~ P H I ~ I ~ ~ I ~ I N ~ T P H I D ~ 3 3 ~ ~ T P H I X ~ l O 2 6 ~ ~ A ~ 8 ~ C ~ O E L X ~ E N  
C O M M O N / 8 N I F / I O ~ I C ~ I T P ~ P H I O ~ U S ~ O  
C O M M O N / B S T O S S / W S P , V S Q ~ C O S N , A L P H A  

COMMON/BTALLY/ I C M l i O E N ( 2 0 , 2 0 )  
COMMON K N T R e N ( 1 1 )  

COWMON/BVEL/ V E L ( 1 0 2 4 )  

OATA S O R T P I / 1 . 7 7 2 4 5 3 8 5 /  
INTEGER A 
EQUIVALENCE(A ,KNTRZ)  
00 3 5  K = l . K I  
C A L L  T I M E l ( T 1 )  
NTHRU = 0. 

N( I ) = O  
00 10 I = l , N 1  

10 O E N ( J r K ) =  0. 
C 
C O E T E R M I N A T I O N  OF L O C A T I O N  AND MAGNITUDE OF P O T E N T I A L  M I N I M U M  

C A L L  M I N R H I  
D E B U G I T P H I O (  I b p I = l , , l l )  

2 0  

2 5  

3 2  
33 

3 4  

C 

KNTR=O 
KNTR2=O 
00 33 I I = l , N O  
C A L L  R A N D ( R )  
J = d F I X ( 1 0 2 4 , q R ) + l  
usa = W E L ( J )  
C A L L  R A N O ( R )  
J = I F I X ( , 1 0 2 4 . ? R )  i 1  
vsa = V E L ~ J )  
C A L L  R A N O ( R )  
J = , I F I X ( 1 0 2 4 . q R )  +1 
FPATH = A L P H A w V E L ( J )  
xo=o. 
I C M l = O  
C A L L  FSCAT 
I F ( I C M 1 . E Q . N l )  GO TO 3 2  
IF(ICML.EQ.O) GO TO 3 3 -  
C A L L  STOSS 
IF(COSN.LT.0.) GO TO 25 
C A L L  FSCAT 
GO TO 20 
C A L L  BSCAT 
GO TO 20 
NTHRU = N T H R U + l  
CONTINUE 
00 34 I = l r N l  
D E N ( I , K )  = OEN( I , K ) / ( F L O A T ( N O ) * S P R T P I I  
Y (  I ) =  DEN( I v K )  
DEBUG( Y I  I )  9 I ~ l r N l )  

C CURVE F I T  OF D E N S I T Y  AND COMPUTATION OF P H I ( X )  AN0 D P H I ( X )  

C 
C A L L  CHEBY ( 2 )  

C A L L  C O E F ( 2 )  
V O L T ( K ) = T P t i I D ( N l )  
CURRNTtK)  = F , L Q A T ( N T H R U ) / F L O A T ( N O )  
O E 8 U G ( N ( I ) ~ I = l r l l )  
OEBUG KNTR 
OEBUG V O L T ( K ) ,  C U R R N T t K )  
C A L L  T I M E l ( T 2 )  
T I M E = ( T Z - T 1 ) / 3 6 0 0 .  
OEBUG T I M E  

3 5  CONTINUE 
RETURN 
END 

2 00741 
2 0 0 7 5 0  
2 0 0 7 5 5  
2 00756 
2 00757 

2 00760 
2 00770 
2 00780 
2 00790 
2 00800 
2 00810 
2 00815 
2 0 0 8 2 0  
2 00825 
2 00830 
2 00834 
2 00835 
2 0836 
2 0837 
2 00840 

2 
2 0 0 8 5 0  
2 00860 
2 0 0 8 6 5  

2 0 0 8 7 5  
2 00876 

2 00882 
2 0 0 8 8 5  
2 0 8 8 6  
2 00900 
2 00910 
2 00920 
2 0 0 9 2 5  
2 00930 
2 00940 
2 0 0 9 4 5  
2 0 0 9 5 0  
2 00960 
2 0 0 9 6 5  
2 00980 
2 00990 
2 01000 
2 01010 
2 01020 
2 01030 
2 01040 
2 0 1 0 5 0  
2 0 1 0 7 0  
2 01080 
2 OllOO 
2 01110 
2 01120 
2 01130 
2 01140 
2 0 1 1 5 0  
2 01152 
2 01154 
2 0 1 1 5 5  
2 01160 
2 0 1 1 7 5  
2 01176 
2 01180 
2 01190 
2 01192 
2 01192 
2 01194 

2 
2 

2 00158 

2 00870 

2 00880 

1 

2 01195 
2 0 1 2 0 0  
2 01210 

39 



BIBFTC FSCAT DECK 
SUBROUTINE FSCAT 
C O N M O N / B M I N / X M I N ~ P H I M I N ~ I M I N ~ T P H I D ~ ~ ~ ~ ~ T P H I X ~ ~ O ~ ~ ~ I A ~ ~ ~ C ~ D E L X ~ E N  
C O M M O N / B N X F / X O ~ X F t X C ~ X T P t F P A T H v S ~ N Q U A O  tKiIf 
COMMON/BSTOSShUSQtYSQtCOSNtALPHA 
CQ~WON/BNIF/IO~ICI FTPtPHIOt USQO 
IO=ENPXO+1.5 
PHIO=TPHIX( IO) 
USQO=USQ-PHI0 
If(X0.6EoXMIN) GO TO 6 
IF(USQO.GT.-PHZMINJ GO TO 4 
CALL XITP 

XF=XTP 
CALL QUADGM 

IF( 1o.ix.1~~) eo TR io 

DIF (K-EQ.loAN0oIIoLEo5) DEBUG XTPIS 
IF(FPATHoGEo 2,+S) GO TO 3 
IF(FPATH.GE.61 GO TO 2 

1 CALL XIC 
DIF (K.EQ.l.AND.II~LE.5) DEBUG XC 
CALL TALLY1 
xo=xc 
RETURN 

2 KS-XTP 
CALL TALLYl 

GO TO 1 

FPATH = FPATH-2.+S 

FPATH=Z.+S-FPATH 

3 CflFL TALLY2 

10 IF(XOoEQ.0.) RETURN 
#F=O* 
NQUAD=5 
CALL QUAD 
DIF (K.EU-1.ANOoIIoLE.5) DEBUG FPATHtS 
IFIFPATh-LT-S) GO TO 1 
XC-XF 
CALL TALLY1 
RETURN 

6 SMAXSQ=Il~+VSQ~USP)+(l.-XO)~*2 
IFI FPATH*FPATHoGE.SMAXSQ) GO TO 5 

4 NOUAD=3 
IF(XO*LT-.ZINQUAD=5 
IF(XOoLToo2.ANDoUSQ.LTL.O1) NQUAD =9 
XF=lr 
CALL QUAD 
06F(K.fQoloAND.IIoLE-5~ DEBUG NQUADIS 
IF(FPATH.GE-S) GO TO 5 

9 CALL XIC 
DIF (KoECt. 1oAND. I IoLE.51 DEBUG SIXC 
CALL TALLYl 
KO=XC 
RETURN 

5 X C = L  
CALL TALLYl 
RETURN 
END 

3 01230 
3 1240 
3 01250 
3 01260 
3 01270 
3 1270 
3 01275 
3 01276 
3 01280 
3 01290 
3 01300 
3 1305 
3 01310 
3 01340 
3 01352 
3 01360 
3 01370 
3 01380 
3 01392 
3 01400 
3 01405 
3 01410 
3 01420 
3 01430 
3 1460 
3 1470 
3 01510 
3 1514 
3 01515 
3 01520 
3 01525 
3 01540 
3 01552 
3 1560 
3 01570 
3 01580 
3 01590 
3 01600 
3 01603 
3 01610 
3 01620 
3 01630 
3 01640 
3 01650 
3 01652 
3 01660 
3 1675 
3 01682 
3 01690 
3 01695 
3 01700 
3 01710 
3 01720 
3 01730 
3 01740 

40 



S I S F T C  8SCAT OECK 

1 

2 

3 

10 

6 

4 

9 

5 

SUSROUTINE-~SCAT 
C O H M 0 ~ / 8 M I N / X M ~ N ~ P H I ~ I N ~ I M I N ~ T P H I O ~ 3 3 ~ ~ T P H I X ~ l O 2 6 ~ ~ A ~ 8 ~ C ~ O E L X ~ E N  
C O ~ M O N / 8 N I F / ~ O ~ I C ~ I T P ~ P H I O ~ U S Q O  
COHMON/8NXF/XO~XF.XC.XTP,FPATH1S1NPUAD t K t I I  
COMnON/BST04S/USQ,VSQ,COSN,ALPHA 
IO=EN+X0+1.5 
PHIO=TPHIX(  IO) 
U SQO= USP-PH IO 
IF(XO.LT.XMIN)OO TO 4 
IFiUSQO.GT.-PHBHINJ GO TO 4 
CALL X I T P  
1FiIO.EQ.ITPJ GO TO 10 
XF=XTP 
CALL QUADGH 
OIF (K.EP.l.AND.II.LE.5) DEBUG XTPIS 
1FiFPATH.GE. 2.*S) GO TO 3 
IFiFPATH.GE.61 GO TO 2 
CALL X I C  
OIF (K.EQ.l.ANO.II.LE.5) DEBUG XC 
C A L L  T A L L Y l  
xo=xc 
RETURN 
X C I X T P  
CALL T A L L Y l  
FPATH=Z.tS-FPATH 
GO TO 1 
CALL TALLY2 
FPATH = FPATH-2m.S 
S M A X S P ~ l 1 . + V S P I U S Q ~ * ~ l . - X O ~ r s Z  
1FlFPATHrFPATH.GE.SMAXSP) GO TO 6 
XF=l.  
NPUAO=5 
CALL QUAO 
O I F  lK.EQ.l.ANO.II.LE.5) OEBUG FPATHqS 
1EiFPATH.LT.S) GO TO 1 
xc= 1 
CALL T A L L Y l  
RETURN 
NPUAD=5 
IFIUSP.LT..Ol~ NPUAO=9 
XF=O. 
CALL QUAO 
IF1FPATH.GE.S) GO TO 5 
CALL K t C  
O I F  (K.EQ.l.AND.II.LE.5) DEBUG SsXC 
CALL T A L L Y 1  
xo=xc 
RETURN 
xc=o. 
CALL T A L L Y l  
RETURN 
END 

SIBFTC STOSS OECK 

C 
C COMPUTATION OF C O L k I S I O N  PARAMETERS FOR ELECTRON-NEUTRAL SCATTERING 
C 

SU8ROUI INE STOSS 

C O H M O N / 8 S T O S S / U S P ~ V S Q ~ C O S N ~ A L P H A  
C O H M O N / 8 N X F / X O ~ X F ~ X C ~ X T P ~ F P A T H ~ S ~ N Q U A O  t K 1 1 1  
CO~MON/FIVEL/VEL(1024J 
C O M M O N / 8 N I F / I O ~ I C r I T P ~ ~ H I O ~ U S Q O  
C O ~ M O N / 8 M I N / X M ~ N ~ P H I M I N ~ I M I N ~ T P H I O ~ 3 3 l ~ T P H I X ~ l O 2 6 J ~ A ~ 8 ~ C ~ O E L X ~ E N  
WSP=WSOO+VSP+TPHIXI I C )  
CALL RANDiR)  
COSN=1--2.*R 
USQ=USQ*COSN*COSN 
VSP=WSQ-USQ 
CALL RANOiR)  
J = I F I X i  1 0 2 4 . t R f + l  
FRATH*ALPHA+VEClJ) 
O E F  (K.EP.1.ANO.II.LE.SI DEBUG USPtVSP*COSNtFPATH 
RETURN 
EN0 

4 01760 
4 01770 
4 01775 
4 01780 
4 01790 
4 1800 
4 01805 
4 01806 
4 01810 
4 01820 
4 01830 
4 1835 
4 1840 

4 0186 
4 01872 
4 01880 
4 01890 
4 01900 
4 01912 
4 01920 
4 1925 
4 01930 
4 01940 
4 01950 
4 1980 
4 1990 
4 02030 
4 02050 
4 02060 
4 02065 
4 2066 
4 02068 
4 0 2 0 7 0  
4 02082 
4 02090 
4 2100 
4 02110 
4 02120 
4 02130 
4 02140 
4 02150 
4 02160 
4 0 2 1 7 0  
4 2180 
4 02192 
4 02200 
4 02205 
4 02210 
4 02220 
4 0 2 2 3 0  
4 2320 
4 2 3 3 0  

5 02270 
5 02274 
5 02275 
5 02276 
5 02280 
5 02290 
5 02295 
5 2294 
5 0 2 2 9 6  
5 0 2 3 0 0  
5 02310 
5 02320 
5 02330 
5 02340 
5 02350 
5 02360 
5 0 2 3 6 5  
5 0 2 3 7 2  
5 02380 
5 02390 

41 
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SIBFTC TALLY1 DECK 6 02401 
SWBROUTINE TALLY1 6 02410 
COMMON/8STOSS/WSPrVSQrCOSN~ALPHA 6 02420 
COHHON/BNXF/XOsXFrXC,XTPrFPATHrSrNQUAO rKrII 6 02430 
CQMHON/BCHEB/NLr XI 2 1) r Y 121 I r COEFSI 21 I r ERROR 6 02440 
COMMON/ BTALLY / I CMl r DEN1 201 20) 6 02450 
C O H M O N / 8 H I N / X M l N r P H I M ~ N r I M I N r T ~ H I D ~ 3 3 l ~ T P H I X l l O 2 6 l r A r 8 r C r O E L X ~ E N  6 02460 
COHMON/8NIF/IOrIC~ITPrRHIOrUSPO 6 02465 
COMMON KNTRrN11.11 6 02410 
IF(XO.GT.XC) GB TO 7 6 02480 
I = I C M l  6 02490 
GO TO 10 6 02500 

1 DEN1I.K) OENUIrKJ + l./SQRTITEST) 6 02510 
DtF lK-EQ.l.ANI.II.LE.5l DEBUG DENIIIK) 6 02512 
NII1=NII)+l 6 02515 

10 I = Ii1 6 02520 
TEST=USQO+TPHIQII) 6 02525 
IFlTEST.LE.0.) GO TO 3 6 02526 
1FlXIIl.EQ.XCf GO TO 2 6 02530 

IFlXII).LT.XCb GO TO 1 6 02535 
6 02536 GO TO 3 
6 02540 

N4 I J=N(I)+l 6 02545 
OIF IK.EP.l.AND.II.LE.5l DEBUG DENlI*K) 6 02552 
I C M l = I  6 02560 
RETURN 6 02570 

7 I = ICM1+1 6 02580 
GO TO 1 1  6 02585 

4 OEN(IrK) = OENOIrK) + l./SPRT(TESTl 6 02590 
NIII=NIII+l 6 02595 
OIF IK.EO.l.ANQ.II.LE.5I DEBUG DEN(IrK) 6 02602 

2 OEN(1.K) = DEN1I.K) + l./SQRTITEST) 

11 I = .I-1 
TEST=USQO+TPHIQl I I 
1FlTEST.LE.O.l GO TO 6 

IFlXlI).GT.XC) GO TO 4 
GO TO 6 

5 OENlIpKl = OEN61,K) + 1. 
N(I)=NlII+l 
OiF lK.EO.l.AND.II.LE.5) 
I C W l = I - l  
RETURN 

3 I C M l = I - l  
RETURN 

6 ICMl=I 
RETURN 
EN0 

IFlX(I).EO.XCt GO TO 5 

, / S O R T 1  TEST) 

DEBUG DENlIrKl 

SIBFTC TALLY2 DECK 
SUBROUTINE TALkYZ 
COMMON/BTALLY/ ICMlrDEN120r20) 
COMMON/8STOSS/WS~rVSP,COSNIALPHA 
COMMON/BNXF/XOdXFrXCIXTP1FPATHrSrNQUAO rKrII 
COHMON/8CHE8/NL~Xl21~rYl21~~COEFSl21~rERROR 
COMMON/BHIN/XMINrPHIMIN~lMIN~TPHIOl33~rTPHIXllO26~rArBrCrDELX~EN 
COMMON/8NIF/lOtICrITP~~H~OrUSPO 
COMMON KNTRrNlll) 
1FlXO.GT.XTPl GO TO 2 
I=ICMl 
GO TO 3 

1 D E N l I . K l = O E N l I . K l + 2 . / S P R T ( T E S T l  
NlII=N(Il+l 
D L F  (K.EP.1.ANB.I 

TES T=USQO + TP H ID I I 
IFlTEST.GT.O..ANO 
RETURN 

2 I * I C M L + l  
GO T O  4 

5 DEN1 IrK)=OEN4 IvK) 
N(II=N(Il+l 

4 I t l - 1  

3 I * I + 1  
.LE.5) DEBUG DEN( 1.K) 

X(I)bLT.XTP 1 GO TO 1 

2./SQRTl T E S T )  

. . _  
TEST=USQO+TPHIB( I )  
I F l T E S T . G T . O . . A N D . X l I ) . G T . X T P  I GO TO 5 
DIF lK.EO.l.AND.II.LE.5) DEBUG DENIIrK) 
RETURN 
EN0 

6 02610 
6 02615 
6 02616 
6 02620 
6 02625 
6 02626 
6 02630 
6 02635 
6 02642 
6 02650 
6 02660 
6 02670 
6 02680 
6 02690 
6 02700 
6 02110 

7 02721 
7 02730 
7 02740 
7 02750 
7 02760 
7 02770 
7 02780 
7 02785 
1 02786 
7 02800 
7 02810 
7 02815 

7 02825 
7 02820 

7 02832 
7 02840 
7 02845 
7 02850 
7 02860 
7 02870 
7 02875 
7 02880 
7 02885 
1 02890 
7 02900 
7 02910 
7 02912 
7 02920 
7 02930 
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S I B F T C  DISCRM DECK 
S U B R O U T I N E  D I S C R M  
R E A L  M k A N l r  MEAN2 
COMM€Jbl /BITERf N O r K  
C D M H D N I B T A L L Y I  I C M l r M N ( Z O r 2 O I  
COMMON/BCHEBf NE. X (  21) r Y ( 21 I r C O E F S (  21 ) *ERROR 
WRJTEI  6r 100) 

100 F O R M A T ( l H L r  4 7 H  MEAN D E N S I T I E S  BEFORE AND AFTER D I S C R I M I N A T I O N  /1H 
1 K e  5 8 H  4 XD MEAN 1 STDoDEV.1 L MEAN 2 STD.DEV.2 / )  

FKR = 1 . I F L D A T O K I  
DO 9 I S l r N 1  
S U M l  9 0. 
SUM2 = 0. 
OD 13 J = l r K  
SUMl SUM1 t O E N ( I r J 1  

13 SUM2 = SUM2 t D E N ( € * J l t D E N ( I r J )  
H E A N 1  fSUMl*  FKR 
S ~ C l l = S Q R T ( ( S U M 2 * F K R  - M E A N l * M E A N l ~ I F L D A T ~ K - l ~ l  
su)d1=0 

L = O  
OD 1 5  J = l r K  
Q* OEN( 1 1  J ) -MEAN1 
IF: (ABS(Q.) .GT.3.+STDl)  GO TO 15 
5 U M 1  SUM1 + D E N ( I r J 1  
SUM2 .t SUM2 j R E N ( I v J ) t D E N ( I r J l  
L=L+1 

15 CONTINUE 
F k R  P L . / F L O A T ( ~ I  

S T D Z = S Q R T ( ( S U M Z * F L R  - MEAN2*MEAN21/FLOAT(L-I)) 
WR I T E A  6, 120) I *  X 

S U ~ Z = O  

MEAN2 = SUMllrFkR 

[ I J r MEANLr  STDL r L r M E A N 2 .  STDZ 
120 F O R M A T ( 1 H  r l X t B 2 r l X r  3 F 1 0 . 6 r l X r I 2 r l X r Z F 1 0 . 6 )  

Y 4  I )=MEAN2 
9 CONTdNUE 

RETURN 
END 

S I B F T C  D I S C R Z  DECK 
SUBROUTINE D I S G R 2  ( A r A M E A N r A D E V l  
C O M M O N / B I T E R / N Q r K  

R E A L  M E A N l r  MEAN2 
D I M E N S I O N  A ( 2 O ) :  

FKR - l . / F L D A T b K I  
SUM1 = 0. 
SUM2 * 0 .  
DO 13 JZ1.K 
sun1 suMi + A ( J )  

13 SUM2 * SUM2 + A ( J 1  + A ( J )  
MEAN1 =SUMl* FKR 
S T D l  = S Q R T ( I S W M Z * F K R  - M E A N l * M E A N l l / F L O A T ~ K - l l  ) 
sun 1=0 

L =O 
DO 15 J = l * K  
X t A  ( J  J-MEAN 1 

sunz=o 

I F ( A B S ( X . l . G T . 3 . * S T D l I  GO TO 15 
SUM l = S U M l + A (  J I 
SUM2 = SUM2 + A ( J 1  * A ( J )  
L = L + 1  

15 C O N T I N U E  
FLR = l . / F L O A T ( h )  
MEAN2 = S U M l t F L R  
ST02 = S Q R T ( ( S W M Z + F L R  - HEAN2*MEAN2)/FLOAT(L-1)) 
AMEANrMEAN2 
ADEV=STDZ 
RETURN 
END 

8 0 2 9 0 5 1  
8029060 
8029070 
8 29080 
8029090 
8029100 
8029110 
8029120 
8029130 
8029140 
8029150 
8029 160 
8 0 2 9 1 7 0  
8 0 2 9 1 8 0  
8029190 
8 0 2 9 2 0 0  
8029210 
8 29220 
8 0 2 9 2 3 0  
8 0 2 9 2 4 0  
8029250 
8 0 2 9 2 6 0  
8029270 
8 2 9 2 8 0  
8 0 2 9 2 9 0  
8 0 2 9 3 0 0  
8029310 
0 0 2 9 3 2 0  
8 0 2 9 3 3 0  
8 0 2 9 3 4 0  
8 2 9 3 5 0  
8 0 2 9 3 6 0  
8 0 2 9 3 7 0  
8 0 2 9 3 8 0  
8 0 2 9 3 9 0  
8029400 
8 0 2 9 4 1 0  

9029421 
9 0 2 9 4 3 0  
9 0 2 9 4 4 0  
9 0 2 9 4 5 0  
9029460 
9029470 
9029480 
9029490 
9 0 2 9 5 1 0  
9 0 2 9 5 2 0  
9 0 2 9 5 3 0  
9029540 
9 29550 
9 0 2 9 5 6 0  
9029570 
9029580 
9 0 2 9 5 9 0  
9 0 2 9 6 0 0  
9 2 9 6 1 0  
9 0 2 9 6 1 5  
9029620 
9029630 
9029640 
90 2 9 650 
9029660 
9 2 9 6 7 0  
9029680 
9 0 2 9 6 9 0  

9029710 
9 0 2 9 r o o  
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SIBFTC QUAD DECKIDEBUG 10029721 
SUBROUTINE QUA0 10029730 
C O N M O N / B N X F / X I i X O ~ X C I X T P I F P A T H ~ S ~ N Q U A D  t K . 1 1  10029750 
C O W M O ~ / 8 S T O S S / Y S Q ~ U S P . C O S N I A L P H A  10029755 
C O M M O N / ~ N I F / I O ~ I C I I T P I P H ~ O I U S Q O  10029756 
DIMENSION A170k.r H470) 10029790 
REAL INTGRL 10029800 
O A T A  4 A i I l , H l I k , I = l ~ 2 8 ~ /  10030050 

1 7.74596669241483E-01, 5.55555555 55556E-019-0. E -00~10030060  
1 8.88888888888889E-Olr 8.61136311 94053E-01. 3 ~ 4 7 8 5 4 8 4 5 1 3 7 4 5 4 E - 0 1 r 1 0 0 3 0 0 7 0  
1 3.39981043584856E-01, 6.52145154 62546E-01. 9~06179845938664E-01r10030080 
1 2.36926885056189E-01s 5.38469310 05683E-019 4.78628670499366E-01.10030090 
1-0. E-00, 5.68888888 88889E-01, 9.32469514203152E-01110030100 
1 1.71324492379170E-01, 6.61209386 66265E-019 3.60761573048139E-01110030110 
1 2.38619186083197E-01. 4.67913934 72691E-01, 9.49107912342759E-01110030120 
1 1.29484966168870E-01. 7.41531185 99394E-01, 2 ~ 7 9 7 0 5 3 9 1 4 8 9 2 7 7 E - 0 1 r 1 0 0 3 0 1 3 0  
1 4.05845151377397E-01, 3.81830050 05119E-01.-0. E -00~10030140  
1 4.17959183673469E-01, 9.60289856 97536E-01, 1~01228536290376E-01r10030150 
1 7.96666477413627E-01, 2.22381034 53374E-01, 5.25532409916329E-01110030160 
1 3.13706645877887E-01, 1.83434642 95650E-01, 3.62683783378362E-01110030170 
1 9.68160239507826E-01, 8.12743883 15740E-02. 8.36031107326636E-01110030180 
1 1.80648160694857E-01, 6.13371432 00590E-01. 2~60610696402935E-01r10030190 
1 3.24253423403809E-01s 3.12347077 40003E-01,-0. E -00~10030200  
1 3.30239355001260E-01. 9.73906528 17172E-01. 6 ~ 6 6 7 1 3 4 4 3 0 8 6 8 8 0 E - 0 2 r 1 0 0 3 0 2 1 0  
1 8.65063366688985E-01; 1.49451 349 50581E-01 t 6.79409568299024E-01 t 10030220 
1 2.19086362515982E-01. 4.33395394 29247E-01. 2.69266719309996E-01110030230 
1 1.48874338981631E-01s 2.95524224 14753E-01/ 10030240 
DATA I A I  I ) ,H l  1).  I = 2 9 1 5 6 ) /  10030250 

I 9.78228658146057E-01. 5.56685671 61740E-02s 8.87062599768095E-01110030260 
1 1.25580369464905E-01r 7.30152005 74049E-01, 1~86290210927734E-01r10030270 
1 5.19096129206812E-01, 2.33193764 91990E-01, 2 ~ 6 9 5 4 3 1 5 5 9 5 2 3 4 5 E - 0 1 1 1 0 0 3 0 2 8 0  
1 2.62804544510247E-01,-0.  E-00, 2.72925086777901E-01.10030290 
1 9.81560634246719E-01, 4.71753363 65120E-02. 9.04117256370475E-01110030300 
1 1.06939325995318E-01. 7.69902674 94305E-01, 1 .60078328543346E-01110030310  

1 2.33492536538355E-01. 1.25233408 11469E-01. 2 ~ 4 9 1 4 7 0 4 5 8 1 3 4 0 3 E - 0 1 r 1 0 0 3 0 3 3 0  
1 9.84183054718588E-01t 4.04840047 53160E-029 9.17598399222978E-01r10030340 
1 9.21214998377280E-02s 8.01578090 33310E-01. 1~38873510219787E-01r10030350 
1 6.42349339440340E-01, 1.78145980 61946E-01. 4.48492751036447E-01~10030360 
1 2.07816047536889E-01r 2.30458315 55135E-01s 2~26283180262897E-01r10030370 
1-0. E-00. 2.32551553 30874E-01. 9.86283808696812E-01r10030380 

1 5 .87a i7954286617~-0 i ,  2.03167426 2 3 0 6 6 ~ - 0 i ,  3 . 6 7 8 3 1 ~ 9 8 9 9 8 1 8 0 ~ - 0 1 1 1 0 0 3 0 3 2 0  

1 3.51194603317520E-02t 9.28434883 63574E-01, 
1 8.27201315069765E-01, 1.21518570 87903E-01, 
1 1.57203167158194E-01, 5.15248636 
1 3.19112368927890E-01, 2.05198463 
1 2.15263853463158E-01, 9.87992518 
1 9 .37273a92400706~-0 i~  7.03660474 

DATA ~ A l I ) r H ( I t l I = 5 7 r 7 0 1 /  
1 8.48206583410427E-01s 1.07159220 
1 1.39570677926t54E-Olr 5.70972172 
1 3.94151347077563E-019 1.86161000 
1 1.98431485327112E-01r-O. 
1 9.89400934991650E-01, 2.71524594 
1 6.22535239386480E-02. 8.65631202 

58154E-01. 
21296E-01. 
20485E-01, 
81080E-02/ 

67172E-01. 
08539E-01, 
15562E-01, 

E-001 
17540E-029 9 .44575023073233E-01 .10030500  
87832E-01s 9.51585116824930E-02.10030510 

8.01580871597600E-02110030390 
6.87292904811685E-01~10030400 
1.85538397477938E-01110030410 
1.08054948707344E-01110030420 
3.07532419961170E-02110030430 

10030440 
10030450 

7.24417731360170E-01110030460 
1.66269205816994E-01r10030470 
2.01194093997435E-01r10030*80 
2 .02578241925561E-01 .10030490  

~~ 

I 7.554~4408355003E-Ol t  1.24628971 55534E-01. 6 ~ 1 7 8 7 6 2 4 4 4 0 2 6 4 4 E - 0 1 r 1 0 0 3 0 5 2 0  
1 1.49595988816577E-01, 4.58016777 57227E-01, 1.69156519395003E-01110030530 
1 2.81603550779259E-019 1.82603415 44924E-01. 9 .50125098376370E-02110030540  
I 1.89450610455068E-01/ 10030550 
EQLIVALENCE iN.NQUAD) 10029810 
X O F A l A ~ ~ X I t l X O - X I ~ ~ l I . , A ~ ~ ~ 5  10029820 

200 Ihicrtt  =n-n 10029830 

C 
C 

204 

210 

215 

220 

225 

250 

1 

-. . . -. . - - - - 
INDKT= M001N12L+1 
INOKT = 1, N 19 EVEN 
INDKT = 2, N t 3  000 
GO TO 1204~210L11NDKT 
MtN=lN*N)/4 -1 
MAX=iN*lN+2)1/4 -2 
GO TO 215 
MIN= I&*N-91/4 + l  
MAX= (N* iN+2) -11 ) /4  
00 220 I=1,2 
DO 220 J=MIN.MAX 
A I  J I =  - A I  J I 
X-XOFAIAIJI I  
TEST=USQO+PHliXI 
IFITEST.LE.0.) GO TO 1 
F=SQRIil.+VSP/TESTl 
INTGRL= 1NTGRLtHlJJ.F 
GO TO i2501225k9 INOKT 
X=XOFA(AIHAX+lk) 
TEST=USPO+PHI(X) 
IFITEST.LE.0.) GO TO 1 
F=SQKTIl.+VSO/TEST) 
INTGRL= INTGRL+H(MAX+lJ*F 
INTGRL=.5*iXO-XII.INTGRL 
S=ABSI INTGRL) 
RETURN 
CONTINUE 
5-0 
RETURN 
END 

10029840 
10029850 
10029860 
10029870 
10029880 
10029890 
10029900 
10029910 
10029920 
10029930 
100 29 940 
LOO29950 
10029960 
10029970 
10029975 
10029976 
10029980 
10029990 
10030000 
10030010 
100 300 15 
10030016 
10030020 
10030030 
10030035 
10030040 
10 
10030056 
10030057 
10030560 
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S I B F T C  P H I  DECK 
FUNCTION P H I ( Z I  
COMMON/BP~HI/NDEG~ B 1 2 0 ) i N D P H I i A D P H I ( 2 O ) r N D D P H I  
L I = NDEG+ 1 
P f B ( L I ) + Z + B ( b l O E G )  
00 100 1=2t NDEG 
LJsL.1-  I 

100 P * B ( L J ) + Z + P  
P H I = P  
RETURN 
EN0 

S I B F T C  D P H I  DECK 
FUNCTION D P H J I Z )  

L I = N D E G + l  
P = B ( L I ) * Z i B ( N D f G )  

COMMON/BPHI/NPHI~APHI(2O)tNDEGt 

00 100 I=2r NDEG 
LJ=LI - I  

100 P f B ( L J I + Z + P  
DPH I = P  
RETURN 
EN0 

IIBFTC OENS DECK 
FUNCT-ION D E N S ( 2 )  
C O M M O N / 8 C H E B I X C 4 3 ) ~ ~ ( 2 l ) t E R R O R  
CQMNON/BCHE62/k I  
NDEG=L 1-1 

00 100 I = l i N D E Q  
P * B ( L I J  

100 P * B ( L J J + Z * P  
DENS=P 

L J = L I - I  

RETURN 
END 

8 1 2 0 ) r N D D P H I  

11030571 
11030580 
11030590 
11030600 
1 LO30610 
11030620 
11030630 
11030640 
11030650 
11030660 
11030670 

12030681 
12030690 
12030700 
12030710 
12030720 
12030730 
12030740 
12030750 
12030760 
12030770 
12030780 

13 30791 
13 30800 
13030810 
130308 15 
13030820 
13 30830 
13 30840 
13030870 
13030880 
13 30690 
13030900 
13030910 

S I B F T C  M I N P H I  DEBUGiDECK 14 00010 
6UBROUTINE M I N P H I  14 00020 

14 00040 
14 00050 DATA N/1024/ 
14 00060 P H I M 3 N  = 0 

I M I N = l  14 0065 
EN=N 14 00070 

14 00080 DELX = l . / F L O A T ( N )  
DO L I = l r N l  14 00090 

1 T P H I D f I )  = P H I C X ( I 1 )  14 00100 
M = Nil 14 00110 

14 00120 T P H I X ( 1 )  = 0 
00 2 I = 2 i M  14 00130 

14 0140 U=DELX+FLOAT(  1-11 
14 00150 T P H I X I I )  = P H I t U )  
14 00160 I F  t P H I M I N . L T . T P H i X ( I ) J  GO TO 2 

P H I M I N  = T P H J X C I )  14 00170 
14 00180 I N I N  = I 

2 CONTINUE 14 00190 
X M I N = D € L X * F L O A T ( I M I N - l ~  14 0200 
DEBUG X M I N i P H I M I N  14 00270 
RETURN 14 00320 

14 00350 END 

COMNON/8MIN/KMYN~PHIHINiIMIN~TPHIO(33)~TPHIX~1026)tAiBrCtDELXtEN 14 00030 
COWl!ON/BCHEB/NlrXL 2 1  1 rDUMMY(  4 3 )  
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SI8FTC XIC DECK 
SUBROUTINE XIC 
C O M M O N / B S T O S S / W S P ~ V S P ~ C O S N ~ A L P H A  
C O C M O N / 8 h ~ F / I O ~ I C ~ I T P I P H l O t U S Q O  
C O W M O h / B h X F / X O ~ X F ~ X C t X T P I F P A T H t S I N Q U A O  r K t l 1  
C O M W O h / 8 H I N / X M l N ~ P H 1 M I N ~ I M I N ~ T P H I O ~ 3 3 ~ ~ T P H I X l l O 2 6 l ~ A ~ 8 ~ C ~ O E L X ~ E N  
OIHEhSlOlv I 1  3)sOSXI 3 )  
COWCOh K N T K ~ h l l l l  
KNTR=KNTR+l 
I l 1 l = 1 0  
iFF=EN*XF+1.5 
F=FPATH 
P=VSP/USQ 
OSX(1J=SURT11.+01 

I F ~ I A B ~ l M l . E 9 ~ O )  GO TO 30 
10 kl=c IFF- I1  1) ) / 4  

MU=ALOG10101 
MN=2*+14-MMl 
IF(M.GT.MN) M=MN 
IF(WM.GT.4) M=l 
EM=H 
H*PBS(€M*OELX/3.l 
00 I1 J12.3 
11 J I= I 1  J-1 I +M 
I J - I I J )  
U=USPO+TPHIXI 131 
P'VSQ/k 
IFlO.LT.O.1 GO TO 6 1  

6 9 = H + 1 0 S X 1 1 1 + 4 . + 0 S X 1 2 1 + 0 S X ~ 3 l ~  
Y=F-SS 
IF(Y.LT.0.) GO TO 2 0  
I11)=1131 
osx i 1) =osx( 3) 
F=Y 
GO TO 10 

11 OSX(JJ=SURT(1.+91 

20 IFF=113 l  
GO TO 10 

30 M.1 IFF - I (  11 1/2 
IFlIABSlH).EP.Ol GO TO 60 
11 2 ) = l (  1l+N 
12- I (  2 J 
P=U SQO+TPH I X( I 2  ) 
06X~ZI=S4RTl1.~VSQ/Ul  
EU=H 
HIABSl EM*OELX*. 5 I 
SS=H+lOSX111+03XI2I) 
YxF-SS 
IF(Y.LT.O.IG0 TO 40  
11 1 l=112)  
0 6 x ~ 1 1 = 0 s x 1 2 1  
F=Y 
GO TO 30 

40  I C = I ( 2 1  
5 0  XC=OELX+FLOAT( IC-1) 

RETURN 
60 ICEIFF 

GO TO 50 
61 IC=IO 

RETURN 
ENC 

SIBFTC XITP DECK 
SUBROUTINE XITP 
C O W N O N / 8 S T O S S / ~ S P ~ V S P ~ C O S N ~ A L P H A  
C O M H O N / B N X F / X O ~ X F ~ X C . X T P I F P A T H . S I N P V A D I K ~ I I  
C O W M O N / 8 H I N / X M I N ~ P H I M I N ~ I M I N I T P H I O l 3 3 l ~ T P H I X l l O 2 6 l ~ A ~ 8 ~ C ~ O E L X ~ E N  
C O W H O N / B N I F / I O r I C ~ I T P t P H l O I V S Q O  
Il=EN+XO+1.5 
12-IMIN 

IF(W.EP.01 GO IO 5 
I = I l + H  
TEST=USUO+TPHIII 1 1  
I F 1  TEST I 2 1  49 3 

GO TO 1 

GO TO 1 

GO TO 6 

1 M-1 12-111/2 

2 12=I  

3 1 1 = I  

4 ITP=I  

5 I T P = I l  
6 XTP=DELX*FLOATlI-l) 

OIFlK.EP.l.ANO~II.LE.51 OEBUG I T P ~ V S P O ~ T P H I X ~ I T P - 1 l ~ T P H I X l I T P l ~  

RETURN 
EN0 

ITPHIX l  I T P + l I  

15 
1 5  
15 
15 
1 5  
15 
1 5  
1 5  
15 
15 
1 5  
15 
15 
15 
15 
15 
1 5  
1 5  
1 5  
15 
15 
1 5  
15 
15  
1 5  
15 
1 5  
15 
15 
1 5  
1 5  
15 
15 
1 5  
15 
15 
1 5  
15 
15 
1 5  
15 
15 
15 
1 5  
1 5  
1 5  
1 5  
15 
1 5  
15 
15 
15 
1 5  
1 5  
1 5  
1 5  
1 5  
15 
1 5  
15 
15 

16 
16 
1 6  
16 
16 
16 
1 6  
1 6  
16 
1 6  
1 6  
16 
16 
16 
16 
1 6  
1 6  
16 
16 
16 
1 6  
1 6  
1 6  
16  
16 

0000 
0010 
0020 
0030 
0040 
0050 
0055 
0060 
0100 
0110 
0120 
0130 
0144 
0146 
0150 
0160 
0 162 
0164 
0166 
0167 
0170 
0180 
0190 
0200 
0205 
0206 
0208 
0209 
0210 
0220 
0230 
0240 
0250 
0260 
0270 
0280 
0290 
0300 
0310 
0320 
0330 
0335 
0340 
0344 
0350 
0360 
0370 
0380 
0390 
0400 
0410 
0420 
0430 
0440 
0450 
0560 
0565  
0570 
0680 
0690 
0700 

0000 
0010 
0020 
0030 
0050 
0040 
0100 
0110 
0120 
0130 
0140 
0150 
0160 
0170 
0180 
0190 
0200 
0210 
0220 
0230 
0240 
0250 
0260 
0270 
0280 
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SIBFTC CHEBY DECK 1703130 1 
SUBROUTINE CHEBYI MOVE) 17031310 

17 31315 C 
C CHEBYSCHEV POLYNQMIAL FIT TO SAMPLE DENSITIES FROM ITER SUBROUTINE 17 31316 

17 31317 C 
OIMENSION T R N M A T ~ 2 1 ~ 2 1 l ~ X l 2 1 ~ ~ S U 8 l l l ~ l l ~ ~  17031340 

2 U P l 1 1 ~ ~ U P P ~ 1 1 ~ ~ A P P l 1 l l ~ A P l l l ~ ~ A S U E N l 2 l l ~ C O E F S l 2 l ~ ~ Y l 2 l ~  17031350 
COWMON/BCHEB/ N1.X.Y.COEFS.EPS 17031 360 

10 

17 
15 
20 

25 
40 

70 

100 

104 

2 

1 

4 

3 

129 

130 

1 3 3  
135 

140 

11 

1000 

COMMON/BPHI/NPHI; Al20)rNDPHI~ AIl2O)~NOOPHI 
COMMON/BCHEB2/N2 
DOUBLE PRECISION PI,THETA,PION 
DATA P1/3.1415926535897932/ 
DATA T R N M A T l l r l ~ ~ T R N M A T l 1 ~ 2 ~ ~ T R N M A T o / l ~ r ~ l ~ ~ 2 ~ /  
EPU [VALENCE 
GO TO 110s100)~MOVE 
N=N 1- 1 
NPN = N+N 
NPLUS2 = N+2 
M = N/2 
MP1 = M + 1  
MP2 = M+2 
EN=N 
PION=PI/EN 
00 15 I=lsNP.L 
THETA = 11. - FLOATII-l)/EN)*PI 
XlI)=OCOSlTHETA) 
x l I ~ = ~ x l I ~ + l . ~ ~ . 5  
CONTINUE 
00 25 I=3,NP1 

4 N R l t  Nl I 

TRNMAT 11.1)  = -TRNMATIlsI-l) 
DO 25 J=29I 
TRNMATlJ.1) = 4 ~ + T R N M A T l J ~ 1 9 1 ~ 1 ~ ~ 2 ~ ~ T R N M A T l J 9 1 ~ 1 ~ ~ T R N M A T l J 9 1 ~ 2 l  
LfMPl 
00 70 I=l.L 
00 70 J=lrL 
SUBI1.J) = OC03lFLOAT~IJ-1l*lI-l~) PION) 
RETURN 
NP1 = NP1 
UPl1) = YINPl)-YllJ 
UPPI11 = Y(NPlf+YIl) 
M O G = M - l  
00 104 I=19M06 
NPlMI = NP1-I 
UPP(I+l) = (YlYPlMl)+YII+1))*2.0 
UPII+l) = lY~NA1MIJ-YII+ll)*2.0 
UPPIMPA) = Z.O+YIHPll 
001 I=i*L92 
APPlI)=O. 
API Il=O. 
00 2 J=lrL,2 
APPlIJ=APPl I)+SU8111J)*UPP(J) 
00 1 J=2.L12 
AP( I 1  =AP( I )  + SUB( I,Jl*UPPl J )  
00 3 1=29L92 
APII)=O. 
APP( I l=O. 
DO 4 J=lrLs2 
APPlI~=APPlIl+SU8lI~J)* UPCJI 
00 3 J=29L9Z 

00 130 I=l.MPL 
APIIJ =APII) + SUB1I.JI+ UP(J) 

ASUBNiI) =IAPPOI)+AP(II)/EN 
INDICE= NPLUS2-I 
A S U B N ~ I N O I C E ) = 0 A P P l I ) - A P ( I ) ) / E N  
ASUBNI 1) = ASUBNI 1)/2.0 
ASUBN(NP1) = ASUBNINP1)/2.0 
00 135 I=l.NPl 
IF I ABS 1 ASUBN.1 I f I -€PSI 13391359135 
ASUBNl I )=O.O 
CONTINUE 
00 140 I=lsNPl 
COEFSII) = 0. 
00 140 J=l,NZ 
COEFSII) = COEESII)+TRNMATII9J)*ASU8NIJ) 
L W 1 + 1  
L=L-l 
IFICO€FSIL).€Q.O.) GO TO 11 
NOOPHI=L-l 
RETURN 
EN0 

17031370 
17031 370 
17 31378 
17 31379 
17 31380 
17031400 
1703 14 10 
1703 1420 
17031430 
1703 1440 
17031450 
1703 1460 
17031470 
17 31480 
17 31490 
1703 1500 
17 31510 
17 31520 
17 31540 
1703 1550 
17031 570 
1703 1580 
1703 1590 
17031600 
17031660 
17031670 
17031680 
17 31690 
17 31700 
17031710 
1703 1720 
17031730 
17031740 
17031750 
17031 760 
17031770 
17031780 
17031 790 
170318 10 
17031820 
17031 830 
17031 840 
1703 1850 
17031 860 
17031870 
17031880 
17031890 
17031900 
17031910 
17031920 
1703 1930 
17031940 
17031970 
17031980 
1703 1990 
17032000 
17032010 
17032020 
17032030 
170 32050 
17032060 
17032070 
17032090 
17032100 
17032110 
17032 120 
17032 140 
17032150 
17032160 
17032170 
17032260 
17032270 
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S I B F T C  COEF DECK 
SUBROUTINE COEF(MOOE1 
COMMON/BCHE82/NZ 
C O M M O N / B P H I / N P H I ~ A P H I ~ 2 O ~ ~ N D P H I ~ A D P H I ~ 2 0 1 ~ N D E N  
C O M M O N / E C H E 8 / N l ~ X ( 4 2 ) ~ C O E F S ( Z 2 ~  
CQ#WON/BHAINI CONST,VOLT(20)rCURRNT(201 
DATA KNTR/O/ 
GO TO (1 ,2 ,3 ) iHODE 

C 
C MODE 1 READ I N Y T I A L  A P H I I Z ) , N l r C O E F S  

1 C A L L  B C R E A D ( X ( 4 l l r C O E F S ( l 1 ) )  
A P H I ( Z J =  X ( 4 1 )  
N D P H I = X l 4 2 )  
RETURN 

C 
C MODE 2 = COMPUTE C O E F F l C f E N T S  OF P H I  AN0 D P H I  

2 IF(KNTR.NE.0) NDPHI=NZ 
NPHI=NDPHI  + 1 
NDEN =NOPHI - 1 
APH I I Z I = V O L T I  2 0 )  
DO 20 I = l * N D P H I  
A P H I l I + 2 )  = C O N S T + C O E F S l I l / F L O A T ~ I t o )  

20 ABH I ( 2 ) = A P H I (  2 ) - A P H I  ( I+Z) 
IF(KNTH.EQ.01 A P H I ( 2 ) = A  
K N T R = l  
DO 2 1  I = l , N P H I  

21 A D P h I 4  I ) =  A P H I U I + l ) + F L O A T I I )  
RETURN 

C 
C MODE 3 = P R I N T  CBEFS 
C PUNCH A P H I  ( 2 )  rN1,COEFS 

3 W R I T E ( 6 , 3 0 1  (COEFS( I )s I = l * N l )  
30 FDRMAT(1HOs 5HCOEFS/ lH ,8F15.6/1H 93F15.6) 

X I l t l l = A P H I  ( 2 )  
X(  4 2 )  =N2 
C A L L  B C D U M P ( X ( 4 1 ) ~ C O E F S I 1 1 1 )  
RETURN 
END 

S I B F T C  PLOT DECK 

C 
C PLOTS OF F I N A L  D E N S I T Y  AND POTENTIAL D I S T R I B U T l O N S  

SUt3ROlrTINE PLOT 

COMCON/BITER/NQ*KI  
C O H M O N / 8 C H E B / N 1 ~ U ( 2 1 ~ ~ V ( 2 l l ~ C O E F S ( 2 l ~ ~ E R R O R  
C O M M O N / B P H I / N P H I ~ A P H I ( 2 0 l ~ N D P H I ~ A 8 ~ 2 1 )  
C O M M O N / B S T O S S / @ I S Q , V S Q * C O S N , A L P H A  
COMMON/BMAIN/ CONST,VOLT(ZO)rCURRNT(ZOJ 
DfMENSION P O ~ l l ) ~ P P ( 1 1 1 ~ X 1 ( 2 6 ) ~ X 2 ~ Z 6 ) ~ D ~ 2 6 ~  v P H I 2 6 )  
DATA P D / 2 6 . ~ 0 . ~ 5 . , 1 0 . ~ 0 . ~ 2 . ~ ~ 2 ~ 0 0 0 . , 5 0 Q ~ ~ 4 ~ ~ 0 ~ ~ 1 ~ /  
DATA PP/26..0..5..10.~0..5.r-200..4.r4.10.,4.~4.,0.,1./ 
DO 1 1=1,26 
X l ( I 1  = .04 P L O A T ( 1 - 1 )  
X 2 ( I I  = X l I I l  
01 I ) = - O E N S ( X l (  E )  1 

1 P H l I J =  - P H I L X l ( I 1 )  
P P ( 7 ) -  A I N T ( P H l 2 6 l J - 1 .  
P P l 7 ) = l O . * P P ( 7 f  
C A L L  S O R T X Y I D , X l t 2 6 )  
C A L L  SORTXYlPH,X2,26) 
WRITE(6 .2)  

C A L L  P L O T X Y I D g X l ,  118,PD) 
W R I T E ( 6 ~ 3 l A P H I 1 2 ) ~ C O N S T I A L P H A , N O ~ N l ~ K I  

2 FORMATIZHPT. 5OX,30HELECTRON D E N S I T Y  O I S T R  

3 FORMATlZHPL,2OX, 2 9 H A P H I ( Z ) , C O N S T r A L P H A , N O  
l l H t r E l O . l r l H , t  16r lH1,12,1H,,  12)  

BUTION 1 

WRITE(6 ,41  

C A L L  PLDTXY(PH,XZ, l lB ,PP)  
WRITEl6,5)APHI~2~~CONSTIALPHAINO,NO~Nl~KI 

4 FORMAT(2HPT. 5SX,22HPOTENTIAL O I S T R I B U T I O N  1 

5 FORMAT(ZHPL,ZOX, 2 9 H A P H I l Z ) ~ C O N S T ~ A L P H A r N O ~ N l ~ K I /  ,F5.2,1H,sF7.2, 
11H,,E10.1* 1H,r 16, 1H.t 1 2 1  1H.r 12) 

RETURN 
END 

19 11 
19 20 
19 24 
19 25 
19 26 
19 00027 
19 00028 
19 30 
19 40 
19 45 
19 50 
19 54 
19 55 
19 56 
19 60 
19 65 
19 00070 
19 75 
19 80 
u9 85 
19 90 
19 92 
u9 94 
19 96 
19 98 
19 100 
19 105 
19 110 
19 120 
19 125 
19 126 
19 130 
19 0 0 1 3 5  
19 00140 
19 00145 
19 00146 
19 150 
1 9  155 

20 00011 
20 00020 
20 00023 
20 00024 
20 00025 
20 00030 
20 00040 
20 00046 
20 00045 
20 00050 
20  00060 
20 00070 
2 0  00080 
20 00090 
20 00100 
20 00110 
20 00120 
20 00125 
20 00126 
20 00130 
20 00140 
2 0  00150 
20 00160 

2 0  0017 
20  00180 
2 0  00190 
20 00200 
20  00210 
20 00220 
2 0  00230 
20 0 0 2 4 0  
20 00250 
20 00260 
20 00270 
20 00280 
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SIBFTC CUMVEL DECK 
SUBROUTINE CUMVEL 
C OM NON / B VEL / ,V EL. ( 1 0 2 4 ) 
D A T A  NHC/ 1024/ 
DELX=l./FLOAT(NMC) 
00 1 I=l.,NMC 
X*DELX*(FLOAT( B-1)+05)  

1 VEL(I)=-ALOG(XL 
RETURN 
E NO 

SIBFTC QWAOGN DECK 

C MODIFIED GAUSS'MEHLER QUADRATURE 
C NUMERICAL INTEGRATION OF FOFX(X)/SQRT(X-XO) FROM 

5U5ROUTINE QIJADGM 

CQMMON/ BN I F /  1Od I C  * ITPI  PI4101 USQO 
COHCON/BNXF/XF&XI*XC,XO rFPATH*S*NQUAD *K*II: 
COHMON/BSTOSS/WSQ*VSQ*COSNpALPHA 
DIMENSION Y(33kvA t33 )  
REAL INTGRL 
D A T A  N/5/ 
D A T A  I Y ( I ) p A t I L * I = l * 3 3 ) /  

1 0056939116E-01* 0.93582787E-00* 0.43719785E-00* 
1 0.86949939E-009 0.34264898E-00* 0.33648268E-01* 
1 0027618431E-00* Om62741329€-00* 0.63467748E-001 
1 0.92215661€-00* 0.20245707E-00* 0*22163569E-011 
1 0.18783157E-00* 0.53853344E-00* 0.46159736E-001 
1 0.74833463E-00* Oe29890270E-00* 0.94849393E-00* 
1 0.15683407E-019 0.49829409E-00* 0.13530001E-00, 
1 0.34494238E-009 0.40633485E-001 0.59275013E-00* 
1 0o81742801E-00* 0.21387865E-00, 0096346128E-00* 
1 0.11675872E-Ol9 0.43052771E-00* Oo10183270E-001 
1 0.26548116E-009 0.37107680E-OOp 0047237154E-001 
1 0.68426202E-00* 0.24303714E-00, 0.86199133E-009 
1 0.97275575E-00, 0.70238921E-Olr 0.90273770E-02r 
1 0.7930056OE-O€q 0.36520683E-00* 0*20977937E-00* 
1 0.38177105E-00, 0.29919198E-00* 0057063582E-001 
1 0174931738E-00, Oo19031702E-00, 0089222197E-001 
1 0.97891421E-007 0054304919€-01/ 

FOFX( X I  Y ) = S Q R T t A B S (  X-XO 1 *(  1. +VSQ/Y 1 1 
XOFY t Y )  = X O +  I XF-XO 1 + Y  
I NTGRL =O.  
M lN=Nt  ( N- 1 1 / 2 - 2 
M A  X = M I N+N- 1 
DO 210 J=MIN,MAX 
X t X O F Y t Y i J ) )  
Z*USQO+PHI ( X )  
IF(ZoLE.0.) GO TO 211  
F=FOFX(X,Z) 

210 INTGRL=INTGRL+AiJ)+F 
I N T G R L = S Q R T ( A B S ( X F - X O ) ) + I N T G R L  
S * A B S I  INTGRL) 
RETURN 

211 sa0 
RETURN 
E NO 

XO T O  XF 

0.72152315E-001 
0.72536757E-00s 
0.44476207E-00* 
Oo59104845E-003 
0.438 17273E-001 
0.13334269€-00* 
0.46698507E-00* 
0.32015666E-00' 
0.94350673E-01, 
0.41039693E-00* 
0.31440633E-00* 
0.16031617E-00* 
0.37890122E-00* 
0.33831304E-00* 
0.24925794E-00* 
0.12450705E-00* 

2 1  00010 
2 1  00020 
2 1  00030 
2 1  00035 
21 00040 
2 1  00050 
21 00060 
2 1  00070 
21 00080 
2 1  00090 

GMQU0030 
GMQU0040 

GMQU0050 
GMQU0060 
GMQU0062 
GMQU0070 
G MQ UO 0 8 0 
GMQU0090 
GMQUO 100 
GMQUOllO 
GMOUO 120 
GMQUOl3O 
GMQUO 140 
GMQUO 150 
GMQUO 160 
GMQUO 170 
GMQUO 180 
GMQUO 190 
GMQU0200 
GMQUOZlO 
GMQU0220 
GMQU0230 
GMQ UO 240 
GMQU0242 
GMQU0250 
GMQU0260 
GMQU0270 
GMQU0280 
GMQU0290 
GMQU0300 
GM 0310 
GM 0312 
GM 0314 
GMQU0320 
GMQU0330 
GMQUO 3 3 2 
GMQU0340 
GMQU0342 
GMOU0344 
GMQU0350 
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APPENDIX D 

ak 
C 

JO 

k 

L 

Q 

SYMBOLS 

[All dimensioned variables in cgs-esu units. ] 

coefficients, eq. (24) 

dimensionless constant, 
eqs. (6), (81, and (10) 

coefficients, eq. (25) 

expectation value of [ 1, 
eq. (A41 

electronic charge, eq. (7) 

marginal distributions, 
eqs. (12) and (13) 

probability distribution 
function, eq. (A2) 

dimensionless velocity 
distribution function, 

eq. (4) 

function of random vari- 
able x, appendixA 

sample mean of g(x), 
eq. (A20) 

electron current to col- 
lector, eq. (22) 

electron emission cur- 
rent, eqs. (8) and (22) 

Bolt z mann' s constant, 
eq. (5) 

eq. (2) 

eq. (3) 

interelectrode separation, 

dimensionless path length, 

I C  

m 

NC 

NO 

n 

A 

n 

n 
0 

P[ 1 
P( 

Rk 

S 

T 

U 

U 

uO 

V 

"f/(X) 

dimensionless path length for col- 
lision, eq. (2) 

mass of electron, eq. (5) 

number of electrons striking col- 
lector, eq. (22) 

total number of histories, eq. (22) 

dimensionless electron density, 
eq. (6) 

electron density, eq. (7) 

electron density of emitted flux, 

eq. (7) 

probability of [ 1, appendix A 

uniform probability distribution 
function, eq. (A7) 

uniformly distributed random 
num be r s 

path length, eq. (3) 

emitter temperature, eq. (5) 

random variable, appendix A 

dimensionless x-component of 
velocity, eqs. (5) and (9) 

initial velocity, eq. (20) 

dimensionless velocity component 
transverse to the x-direction 

potential distribution 
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vO 

v v , v  

x, y 
X’ y z 

X 

Y 

YC 

YO 

a 

rC 

I-0 

8 

initial velocity of monoener- 
getic emission, eq. (9) 

components of velocity 

random variables, appendix A 

spatial coordinate, eq. (7) 

dimensionless spatial coordi- 
nate, eq. (7) 

location of collision, eq. (29) 

location of last event, 
eq. (29) 

dimensionless r ecipr oc a1 
mean free path, eq. (3) 

flux to collector 

emitted flux 

scattering angle, eq. (1) 

8* 

h 

a 
g 

a 

0 
g 

J 

sp 

capture angle, eq. (34) 

mean free path, eq. (3) 

the or et ic al standard deviation, 
eq. (A20) 

sample deviation, appendix A 
standard deviation of current 

to collector 

dimensionless potential distribu- 
tion: thermionic emission, 
eq. (7); monoenergetic emis- 
sion, eq. (9) 

solid angle, eq. (1) 

integral value 

sequence of terms { } ,  appen- 
dix A 
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